

A *Mathematica* package to cope with partially ordered sets

Pietro Codara

Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano

- **1.** Introduction to *poset*
- 2. Basic features
- 3. Investigating partitions of posets
- 4. Investigating the lattice of partitions
- 5. Other features

The package poset

- basic features to treat *partially ordered sets*
- enumerate, create, and display *monotone and regular partitions* of partially ordered sets
- deal with the <u>lattices</u> of partitions of a poset
- compute <u>products</u> and <u>coproducts</u> in the category <u>of partially</u> <u>ordered sets</u> and monotone maps
- compute <u>products</u> and <u>coproducts</u> in the category <u>of forests</u> (disjoint union of trees) and open maps

Basic features (1)

```
<< poset.m
```

Hasse[{C3, CU3}]

? Poset

Poset[relation] and Poset[relation],v] generate a partially ordered set, represented as a directed graph (see

Combinatorica manual). relation is a set of pairs representing the order relation of the poset (not necessarily the entire order relation). v is a list of vertices.

Basic features (2)

```
B2 = Poset[{{"x", "y"}, {"x", "z"}}]

- Graph: < 5,3,Directed > -
```

Hasse[B2]

Relation[B2]

 $\{ \{x, x\}, \{x, y\}, \{x, z\}, \{y, y\}, \{z, z\} \}$

Covering[B2]

 $\{ \{ x, y \}, \{ x, z \} \}$

PosetElements[B2]

 $\{x, y, z\}$

Investigating partitions of poset

[Cod08] Pietro Codara, *A theory of partitions of partially ordered sets*, Ph.D. thesis, Università degli Studi di Milano, Italy (2008).

[Cod09] Pietro Codara, *Partitions of a finite partially ordered set*, From Combinatorics to Philosophy: The Legacy of G.-C. Rota, Springer, New York (2009), 45--59.

? PosetPartitions

PosetPartitions[p] generates the list of all monotone partitions of a poset. Each monotone partition is represented as a *graph*. p is a *poset*. PosetPartitions[p] outputs a list of *graphs*, and displays the total number of monotone partition of p, and the total number of cases analyzed by the function to obtain the monotone partitions.

? RegularPartitions

RegularPartitions[p] generates the list of all regular partitions of a poset. Each regular partition is represented as a *graph*. p is a *poset*. RegularPartitions[p] outputs a list of *graphs*, and displays the total number of regular partition of p, and the total number of cases analyzed by the function to obtain the regular partitions.

Monotone and regular partitions of a poset

```
PB2 = PosetPartitions[B2];
```

Analyzed preorders: 16 - Poset Partitions: 7

CreateHasse[PB2, 8]

◀ | ▶

RB2 = RegularPartitions[B2];

Analyzed preorders: 5 - Regular Partitions: 5

CreateHasse[RB2, 6]

⋆xyz

Partitions of a poset: note on implementation (1)

- In general, a monotone partitition returned by the function *PosetPartitions* is not a poset, but a preorder (i.e. the binary relation does not have the antisymmetric property).
- If we apply the function *Hasse* to one of such partitions, we do not obtain an Hasse diagram, but a directed graph.

Hasse[PB2[[4]]]

∢ | ▶

Partitions of a poset: note on implementation (2)

• The function *PartitionToPoset* solves this problem, by reducing blocks to single elements and concatenating labels.

Hasse[PartitionToPoset[PB2[[4]]]]

Regular partitions

• The poset...

Hasse[P = Poset[{{"a", "b"}, {"c", "d"}}]]

*b

*d

• The regular partitions...

CreateHasse[RegularPartitions[P], 8]

Analyzed preorders: 15 - Regular Partitions: 14

4 | ▶

The lattice of regular partitions

? PosetPartitionLattice

PosetPartitionLattice[plist] returns the lattice structure of a given list of monotone or regular partitions plist. plist is usually obtained by using RegularPartitions or PosetPartitions.

• The poset...

• The regular partitions...

xyz

CreateHasse[MP = PosetPartitionLattice[RB2]]

The lattice of monotone partitions

• The poset...

• The monotone partitions...

CreateHasse[RP = PosetPartitionLattice[PB2]]

Additional features

Some functions of the package are particularly useful when the graphical output cannot offer any information on the lattice.

• The poset...

• The Lattice of regular partitions...

BigLattice = RegularPartitions[P4];

Investigating the properties of the lattice

```
Analyzed preorders: 877 - Regular Partitions: 491

WhitneyNumbers[BigLattice]

{1, 19, 107, 208, 131, 24, 1}

Atoms = AtomsPosition[BigLattice]

{2, 3, 4, 5, 6, 7, 15, 16, 20, 21, 23, 24, 25, 26, 33, 49, 50, 51, 61}

Coatoms = CoatomsPosition[BigLattice]

{457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490}
```

◀ | ▶

CreateHasse[BigLattice[[Atoms]], 8]

Coatoms

CreateHasse[BigLattice[[Coatoms]], 8]

dyz	cdyz	cdz	cyz	bcyz	bdyz	byz	abyz
abcx	labx	labxy	labdx	Jadx	Jacx	Jacdx	cdx
aby	acyz	adyz	ayz	$^{\mathrm{yz}}$	\int^{dz}	l cz	bcdyz
cdxz	bdx	lbcx	bcdx	labedx	labcxy	labdxy	ax
by	abcyz	abdyz	acdyz] ^{ay}	\mathbf{j}^z] ^y	abcdyz
					ah a dana		
acdxz	ldx	cx	lbx	bedxz	labedxy	abcdxz	1x

Partitions of chains (1)

In [Cod08, 6.2] it is proved that the monotone partition lattice and the regular partition lattice of a chain with n elements are isomorphic, and that they are isomorphic to the Boolean lattice B_{n-1} .

Hasse[{PosetPartitionLattice[PosetPartitions[Chain[2]]], PosetPartitionLattice[PosetPartitions[Chain[3]]], PosetPartitionLattice[PosetPartitions[Chain[4]]]}]

```
Analyzed preorders: 2 - Poset Partitions: 2
Analyzed preorders: 8 - Poset Partitions: 4
Analyzed preorders: 64 - Poset Partitions: 8
```


Partitions of chains (2)

```
{\tt Hasse} \, [\, \{ {\tt PosetPartitionLattice} \, [ {\tt RegularPartitions} \, [ {\tt Chain} \, [2] \, ] \, ] \, ,
```

PosetPartitionLattice[RegularPartitions[Chain[3]]], PosetPartitionLattice[RegularPartitions[Chain[4]]]}]

```
Analyzed preorders: 2 - Regular Partitions: 2

Analyzed preorders: 5 - Regular Partitions: 4

Analyzed preorders: 15 - Regular Partitions: 8
```


Partitions of chains (3)

Hasse[{BooleanAlgebra[1], BooleanAlgebra[2], BooleanAlgebra[3]}]

A case of counting (1)

We study an enumerating problem solved in [Cod08, 6.4]. We want to count all regular partitions of a family of posets M_1 , M_2 , M_3 , ...

```
M1 = Poset[{{"r", "a"}, {"a", "t"}}]; M2 = Poset[{{"r", "a"}, {"r", "b"}, {"b", "t"}, {"a", "t"}}];
M3 = Poset[{{"r", "a"}, {"r", "b"}, {"c", "t"}, {"b", "t"}, {"a", "t"}}];
M4 = Poset[{{"r", "a"}, {"r", "b"}, {"r", "c"}, {"r", "d"}, {"d", "t"}, {"c", "t"}, {"b", "t"}, {"a", "t"}}];
M5 = Poset[{{"r", "a"}, {"r", "b"}, {"r", "c"}, {"r", "d"}, {"r", "e"}, {"e", "t"}, {"d", "t"}, {"c", "t"}, {"b", "t"}, {"b", "t"}, {"a", "t"}}]
Hasse[{M1, M2, M3, M4, M5}, 6]
```


◀ | ▶

A case of counting (2)

RegularPartitions[#] & /@ {M1, M2, M3, M4, M5};

```
Analyzed preorders: 5 - Regular Partitions: 4
Analyzed preorders: 15 - Regular Partitions: 11
Analyzed preorders: 52 - Regular Partitions: 38
Analyzed preorders: 203 - Regular Partitions: 152
Analyzed preorders: 877 - Regular Partitions: 675
```

The following formula count the total number of regular partitions of the poset M_i .

$$B_{i+2} - B_{i+1} + 1$$

The number B_n is the n^{th} Bell number, and it is computed by the *Mathematica* function BellB[n].

```
Table [BellB [n + 2] - BellB [n + 1] + 1, \{n, 1, 15\}]
\{4, 11, 38, 152, 675, 3264, 17008, 94829, 562596, 3535028, 23430841, 163254886, 1192059224, 9097183603, 72384727658\}
```

Thank you for your attention

■