Euler Characteristic in Gödel and Nilpotent Minimum Logics

Pietro Codara

Dipartimento di Informatica, Università degli Studi di Milano

UFBA, Salvador, Bahia - March 21, 2013
The Euler-Klee-Rota lattice-theoretic characteristic

Valuation

Let L be a (bounded) distributive lattice whose bottom element is denoted \bot. A function $\nu: L \to \mathbb{R}$ is a *valuation* if it satisfies $\nu(\bot) = 0$, and

$$\nu(x) + \nu(y) = \nu(x \lor y) + \nu(x \land y)$$

for all $x, y \in L$.
The Euler-Klee-Rota lattice-theoretic characteristic

Valuation

Let L be a (bounded) distributive lattice whose bottom element is denoted \bot. A function $\nu: L \to \mathbb{R}$ is a valuation if it satisfies $\nu(\bot) = 0$, and

$$\nu(x) + \nu(y) = \nu(x \lor y) + \nu(x \land y)$$

for all $x, y \in L$.

Lemma

Every valuation on a finite distributive lattice L is uniquely determined by its values at the join-irreducibles of L.

Recall that $x \in L$ is join-irreducible if it is not the bottom of L, and $x = y \lor z$ implies $x = y$ or $x = z$ for all $y, z \in L$.
The Euler-Klee-Rota lattice-theoretic characteristic, official definition:

(V. Klee 1963; G.-C. Rota 1974)

Euler characteristic

The **Euler characteristic** of a finite distributive lattice L is the unique valuation $\chi: L \to \mathbb{R}$ such that $\chi(x) = 1$ for any join-irreducible element $x \in L$.
The Euler-Klee-Rota lattice-theoretic characteristic

Let V be a set of *vertices*, and let P be the poset of subsets of V ordered by inclusion. The collection \mathcal{L} of lower sets of P is a (bounded) distributive lattice under \cap, \cup.
Let \(V \) be a set of vertices, and let \(P \) be the poset of subsets of \(V \) ordered by inclusion. The collection \(\mathcal{L} \) of lower sets of \(P \) is a (bounded) distributive lattice under \(\cap \), \(\cup \).

An element \(\Sigma \in \mathcal{L} \) is the same thing as a (combinatorial) simplicial complex: a collection of subsets of \(V \) such that \(A \subseteq B \in \Sigma \Rightarrow A \in \Sigma \).
The Euler-Klee-Rota lattice-theoretic characteristic

- Let V be a set of *vertices*, and let P be the poset of subsets of V ordered by inclusion. The collection \mathcal{L} of lower sets of P is a (bounded) distributive lattice under \cap, \cup.

- An element $\Sigma \in \mathcal{L}$ is the same thing as a (combinatorial) simplicial complex: a collection of subsets of V such that $A \subseteq B \in \Sigma \Rightarrow A \in \Sigma$.

- It turns out that the Euler characteristic of any simplicial complex Σ whose vertices are contained in V can be described in terms of the lattice \mathcal{L}.
Consider the Euler Characteristic on L, that is, the unique valuation such that $\chi(\Delta) = 1$ whenever Δ is a join-irreducible element of the lattice L.
The Euler-Klee-Rota lattice-theoretic characteristic

- Consider the Euler Characteristic on \mathcal{L}, that is, the unique valuation such that $\chi(\Delta) = 1$ whenever Δ is a join-irreducible element of the lattice \mathcal{L}.

- Equivalently, let $\chi: \mathcal{L} \rightarrow \mathbb{R}$ be such that $\chi(\emptyset) = 0$, and $\chi(\Delta) = 1$ whenever Δ is a simplex.
The Euler-Klee-Rota lattice-theoretic characteristic

Consider the Euler Characteristic on \mathcal{L}, that is, the unique valuation such that $\chi(\Delta) = 1$ whenever Δ is a join-irreducible element of the lattice \mathcal{L}.

Equivalently, let $\chi: \mathcal{L} \rightarrow \mathbb{R}$ be such that $\chi(\emptyset) = 0$, and $\chi(\Delta) = 1$ whenever Δ is a simplex.

It turns our that χ as in the above agrees with the classical Euler characteristic on each simplicial complex $\Sigma \in \mathcal{L}$.
Outline

1. Euler Characteristic of a formula in classical propositional logic
2. Euler Characteristic of a formula in Gödel logic
3. Euler Characteristic of a formula in Nilpotent Minimum logic
For an integer $n \geq 0$, let FORM_n denote the set of formulæ in classical (propositional) logic over the atomic propositions X_1, \ldots, X_n and the logical constant \bot (falsum).
For an integer $n \geq 0$, let FORM_n denote the set of formulae in classical (propositional) logic over the atomic propositions X_1, \ldots, X_n and the logical constant \bot (falsum).

Question: Is there a sensible notion of Euler characteristic for a formula $\varphi \in \text{FORM}_n$?
Euler characteristic of a classical formula

For an integer \(n \geq 0 \), let \(\text{FORM}_n \) denote the set of formulæ in classical (propositional) logic over the atomic propositions \(X_1, \ldots, X_n \) and the logical constant \(\bot \) (falsum).

Question: Is there a sensible notion of Euler characteristic for a formula \(\varphi \in \text{FORM}_n \) ?

Writing \(\equiv \) for the relation of logical equivalence, the quotient set \(\text{FORM}_n/\equiv \) is naturally a Boolean algebra.
Euler characteristic of a classical formula

- For an integer \(n \geq 0 \), let \(\text{FORM}_n \) denote the set of formulæ in classical (propositional) logic over the atomic propositions \(X_1, \ldots, X_n \) and the logical constant \(\bot \) (falsum).

- Question: Is there a sensible notion of Euler characteristic for a formula \(\varphi \in \text{FORM}_n \)?

- Writing \(\equiv \) for the relation of logical equivalence, the quotient set \(\text{FORM}_n / \equiv \) is naturally a Boolean algebra.

- So we can consider valuations on \(\text{FORM}_n / \equiv \). In particular, let \(\chi \) be the Euler(-Klee-Rota) characteristic of \(\text{FORM}_n / \equiv \).
Euler characteristic of a classical formula

- For an integer $n \geq 0$, let FORM_n denote the set of formulæ in classical (propositional) logic over the atomic propositions X_1, \ldots, X_n and the logical constant \bot (falsum).

- **Question:** Is there a sensible notion of *Euler characteristic* for a formula $\varphi \in \text{FORM}_n$?

- Writing \equiv for the relation of logical equivalence, the quotient set FORM_n/\equiv is naturally a Boolean algebra.

- So we can consider valuations on FORM_n/\equiv. In particular, let χ be the Euler(-Klee-Rota) characteristic of FORM_n/\equiv.

- Then we say that the *Euler characteristic of* φ *is* $\chi([\varphi]_{\equiv})$.
In finite Boolean algebras, \textit{join-irreducible}=\textit{atom}.
Euler characteristic of Boolean algebras

- In finite Boolean algebras, \(\text{join-irreducible}=\text{atom} \).
- So if \(B \) is a finite Boolean algebra, and \(x \in B \) is the join of \(n \) atoms, we have \(\chi(x) = n \) by the valuation property. (The characteristic is additive over disjoint elements.)
Euler characteristic of Boolean algebras

- In finite Boolean algebras, join-irreducible=atom.
- So if \(B \) is a finite Boolean algebra, and \(x \in B \) is the join of \(n \) atoms, we have \(\chi(x) = n \) by the valuation property. (The characteristic is additive over disjoint elements.)
- In other words, if \(B \) is canonically represented as the Boolean algebra of all subsets of a set (=the set of atoms of \(B \)), then \(\chi(S) = \text{cardinality of } S \) for all \(S \in B \).
Euler characteristic of Boolean algebras

- In finite Boolean algebras, join-irreducible=atom.
- So if B is a finite Boolean algebra, and $x \in B$ is the join of n atoms, we have $\chi(x) = n$ by the valuation property. (The characteristic is additive over disjoint elements.)
- In other words, if B is canonically represented as the Boolean algebra of all subsets of a set (=the set of atoms of B), then $\chi(S)=$cardinality of S for all $S \in B$.
- Since atoms of FORM_n/\equiv are in natural bijections with assignments of truth values $\mu: \{X_1, \ldots, X_n\} \rightarrow \{0, 1\}$, we have:
Euler characteristic of Boolean algebras

- In finite Boolean algebras, join-irreducible=atom.
- So if B is a finite Boolean algebra, and $x \in B$ is the join of n atoms, we have $\chi(x) = n$ by the valuation property. (The characteristic is additive over disjoint elements.)
- In other words, if B is canonically represented as the Boolean algebra of all subsets of a set (=the set of atoms of B), then $\chi(S)=\text{cardinality of } S$ for all $S \in B$.
- Since atoms of FORM_n/\equiv are in natural bijections with assignments of truth values $\mu: \{X_1, \ldots, X_n\} \to \{0, 1\}$, we have:

$\chi(\lbrack \varphi \rbrack_\equiv)$ is the number of assignments that satisfy φ.
Gödel logic

Gödel logic G_{∞} can be semantically defined as a many-valued logic.
Gödel logic

Gödel logic \mathbb{G}_∞ can be semantically defined as a many-valued logic.
Let FORM be the set of formulæ over propositional variables X_1, X_2, \ldots in the language $\land, \lor, \to, \neg, \bot, \top$.
Gödel logic \mathcal{G}_∞ can be semantically defined as a many-valued logic.

Let FORM be the set of formulæ over propositional variables X_1, X_2, \ldots in the language $\land, \lor, \rightarrow, \neg, \bot, \top$.

An assignment is a function $\mu: \text{FORM} \to [0, 1] \subseteq \mathbb{R}$ with values in the real unit interval such that, for any two $\alpha, \beta \in \text{FORM}$,

\[
\mu(\alpha \land \beta) = \min\{\mu(\alpha), \mu(\beta)\}
\]

\[
\mu(\alpha \lor \beta) = \max\{\mu(\alpha), \mu(\beta)\}
\]

\[
\mu(\alpha \rightarrow \beta) = \begin{cases}
1 & \text{if } \mu(\alpha) \leq \mu(\beta) \\
\mu(\beta) & \text{otherwise}
\end{cases}
\]

and $\mu(\neg \alpha) = \mu(\alpha \rightarrow \bot), \mu(\bot) = 0, \mu(\top) = 1$.

Gödel logic \(G_\infty \) can be semantically defined as a many-valued logic.

Let FORM be the set of formulæ over propositional variables \(X_1, X_2, \ldots \) in the language \(\land, \lor, \rightarrow, \neg, \bot, \top \).

An assignment is a function \(\mu : \text{FORM} \rightarrow [0, 1] \subseteq \mathbb{R} \) with values in the real unit interval such that, for any two \(\alpha, \beta \in \text{FORM} \),

\[
\begin{align*}
\mu(\alpha \land \beta) &= \min\{\mu(\alpha), \mu(\beta)\} \\
\mu(\alpha \lor \beta) &= \max\{\mu(\alpha), \mu(\beta)\} \\
\mu(\alpha \rightarrow \beta) &= \begin{cases} 1 & \text{if } \mu(\alpha) \leq \mu(\beta) \\ \mu(\beta) & \text{otherwise} \end{cases} \\
\mu(\neg \alpha) &= \mu(\alpha \rightarrow \bot), \quad \mu(\bot) = 0, \quad \mu(\top) = 1.
\end{align*}
\]

A tautology is a formula \(\alpha \) such that \(\mu(\alpha) = 1 \) for every assignment \(\mu \).
Gödel algebras

Gödel algebras are Heyting algebras (=Tarski-Lindenbaum algebras of intuitionistic propositional calculus) satisfying the prelinearity axiom

\[(x \to y) \lor (y \to x) = \top.\]
Gödel algebras are Heyting algebras (=Tarski-Lindenbaum algebras of intuitionistic propositional calculus) satisfying the prelinearity axiom

$$(x \rightarrow y) \lor (y \rightarrow x) = \top.$$

They provide the equivalent algebraic semantics of Gödel logic.
Gödel algebras are Heyting algebras (=Tarski-Lindenbaum algebras of intuitionistic propositional calculus) satisfying the prelinearity axiom

\[(x \to y) \lor (y \to x) = \top.\]

They provide the equivalent algebraic semantics of Gödel logic. For an integer \(n \geq 0\), let us write \(G_n\) for the Tarski-Lindenbaum algebra of Gödel logic over the variables \(X_1, \ldots, X_n\), that is, the algebra \(\text{FORM}_n/\equiv\), where \(\equiv\) is the logical equivalence between formulæ.
Euler characteristic of a formula in Gödel logic

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice G_n.
The Euler characteristic of a formula \(\varphi \in \text{FORM}_n \), written \(\chi(\varphi) \), is the number \(\chi([\varphi]_{\equiv}) \), where \(\chi \) is the Euler characteristic of the finite distributive lattice \(G_n \).

Does this notion have any logical content?
Euler characteristic of a formula in Gödel logic

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_\equiv)$, where χ is the Euler characteristic of the finite distributive lattice \mathcal{G}_n.

Does this notion have any logical content?

Theorem

Fix an integer $n \geq 1$. For any formula $\varphi \in \text{FORM}_n$, the Euler characteristic $\chi(\varphi)$ equals the number of Boolean assignments $\mu: \text{FORM}_n \rightarrow [0, 1]$ such that $\mu(\varphi) = 1$.

Euler characteristic of a formula in Gödel logic

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice \mathcal{G}_n.

Does this notion have any logical content?

Theorem

Fix an integer $n \geq 1$. For any formula $\varphi \in \text{FORM}_n$, the Euler characteristic $\chi(\varphi)$ equals the number of Boolean assignments $\mu: \text{FORM}_n \to [0,1]$ such that $\mu(\varphi) = 1$.

In the sense given by this result, the characteristic of a formula as defined above is a classical notion – it will not distinguish, for instance, classical from non-classical tautologies.
Gödel \((k + 1)\)-valued logic

We shall use Gödel \((k + 1)\)-valued logic, written \(\mathbb{G}_{k+1}\), for an integer \(k \geq 1\).
We shall use Gödel \((k + 1)\)-valued logic, written \(\mathcal{G}_{k+1}\), for an integer \(k \geq 1\).

\(\mathcal{G}_{k+1}\) is obtained from \(\mathcal{G}_\infty\), Gödel (infinite-valued) logic recalled above, by restricting assignments to those taking values in the set

\[V_{k+1} = \{0 = \frac{0}{k}, \frac{1}{k}, \ldots, \frac{k-1}{k}, \frac{k}{k} = 1\} \subseteq [0, 1] , \]

that is, to \((k + 1)\)-valued assignments.
Generalised Euler characteristic of a formula in Gödel logic

For a join-irreducible $g \in \mathcal{G}_n$, say g has height $h(g)$ if the (unique) chain of join-irreducibles below g in \mathcal{G}_n has cardinality $h(g)$.
For a join-irreducible $g \in G_n$, say g has **height** $h(g)$ if the (unique) chain of join-irreducibles below g in G_n has cardinality $h(g)$.

Generalised Euler characteristic

Fix integers $n, k \geq 1$. We write $\chi_k : G_n \rightarrow \mathbb{R}$ for the unique valuation on G_n that satisfies

$$\chi_k(g) = \min \{ h(g), k \}$$

for each join-irreducible element $g \in G_n$. Further, if $\varphi \in \text{FORM}_n$, we define $\chi_k(\varphi) = \chi_k([\varphi]_\equiv)$.

It turns out that χ_k is a “k-valued characteristic”, as we proceed to show.
Our next aim is to relate χ_k with (not necessarily Boolean) $[0, 1]$-valued assignments. In general, even if $n = 1$ and the language boils down to $\{X_1\}$, there are uncountably many assignments $\mu: \{X_1\} \to [0, 1]$. However, in Gödel logic this fact is quite misleading, and there is the following important reduction to finiteness.
Our next aim is to relate χ_k with (not necessarily Boolean) $[0,1]$-valued assignments. In general, even if $n = 1$ and the language boils down to $\{X_1\}$, there are uncountably many assignments $\mu: \{X_1\} \rightarrow [0,1]$. However, in Gödel logic this fact is quite misleading, and there is the following important reduction to finiteness.

n-equivalence

Fix integers $n, k \geq 1$. We say that two $(k+1)$-valued assignments μ and ν are equivalent over the first n variables, or just n-equivalent, if and only if for all formulæ $\varphi(X_1, \ldots, X_n)$ of \mathbb{G}_{k+1}, $\mu(\varphi) = 1$ if and only if $\nu(\varphi) = 1$. The same definition can be given, mutatis mutandis, for \mathbb{G}_∞.
Reduction to finitely many possible worlds

In G_∞, there are only finitely many equivalence classes of $[0, 1]$-valued assignments to n variables.
Reduction to finitely many possible worlds

In $G\infty$, there are only finitely many equivalence classes of $[0, 1]$-valued assignments to n variables.

How many, exactly?
Reduction to finitely many possible worlds

In G_∞, there are only finitely many equivalence classes of $[0,1]$-valued assignments to n variables.

How many, exactly?

This many: $P(n, n+1)$,
In G_{∞}, there are only finitely many equivalence classes of $[0, 1]$-valued assignments to n variables.

How many, exactly?

This many: $P(n, n + 1)$,

where $P(n, k) = \sum_{i=1}^{k} \sum_{j=0}^{n} \binom{n}{j} T(j, i)$.
Reduction to finitely many possible worlds

In G_∞, there are only finitely many equivalence classes of $[0, 1]$-valued assignments to n variables.

How many, exactly?

This many: $P(n, n + 1)$,
where

$$P(n, k) = \sum_{i=1}^{k} \sum_{j=0}^{n} \binom{n}{j} T(j, i),$$
and

$$T(n, k) = \begin{cases} 1 & \text{if } k = 1, \\ 0 & \text{if } k > n + 1, \\ \sum_{i=1}^{n} \binom{n}{i} T(n - i, k - 1) & \text{otherwise}. \end{cases}$$
<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>27</td>
<td>45</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>81</td>
<td>191</td>
<td>275</td>
<td>299</td>
<td>299</td>
<td>299</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>243</td>
<td>813</td>
<td>1563</td>
<td>2043</td>
<td>2163</td>
<td>2163</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>729</td>
<td>3431</td>
<td>8891</td>
<td>14771</td>
<td>18011</td>
<td>18731</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>2187</td>
<td>14325</td>
<td>49731</td>
<td>106851</td>
<td>158931</td>
<td>184131</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>6561</td>
<td>59231</td>
<td>272675</td>
<td>757019</td>
<td>1407179</td>
<td>1921259</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>19683</td>
<td>242973</td>
<td>1468203</td>
<td>5228043</td>
<td>12200883</td>
<td>20214483</td>
</tr>
</tbody>
</table>

The number \(P(n, k)\) of distinct equivalence classes of \((k + 1)\)-valued assignments over \(n\) variables.
Main result

Theorem

Fix integers \(n, k \geq 1 \), and a formula \(\varphi \in \text{FORM}_n \).

\[\chi_k(\varphi) \text{ equals the number of } (k + 1)-\text{valued assignments } \mu: \text{FORM}_n \rightarrow [0, 1] \text{ such that } \mu(\varphi) = 1, \text{ up to } n\text{-equivalence.} \]
Main result

Theorem

Fix integers $n, k \geq 1$, and a formula $\varphi \in \text{FORM}_n$.

1. $\chi_k(\varphi)$ equals the number of $(k + 1)$-valued assignments $\mu : \text{FORM}_n \to [0, 1]$ such that $\mu(\varphi) = 1$, up to n-equivalence.

2. φ is a tautology in \mathbb{G}_{k+1} if and only if $\chi_k(\varphi) = P(n, k)$.
Main result

Theorem

Fix integers $n, k \geq 1$, and a formula $\varphi \in \text{FORM}_n$.

1. $\chi_k(\varphi)$ equals the number of $(k + 1)$-valued assignments $\mu : \text{FORM}_n \to [0, 1]$ such that $\mu(\varphi) = 1$, up to n-equivalence.

2. φ is a tautology in G_{k+1} if and only if $\chi_k(\varphi) = P(n, k)$.

3. φ is a tautology in G_{∞} if and only if it is a tautology in G_{n+2} if and only if $\chi_{n+1}(\varphi) = P(n, n + 1)$.
Proof of main result

Lemma 1

Fix integers \(n, k \geq 1 \), let \(x \in G_n \) and consider the valuation \(\chi_k : G_n \rightarrow \mathbb{R} \). Then, \(\chi_k(x) \) equals the number of join-irreducible elements \(g \in G_n \) such that \(g \leq x \) and \(h(g) \leq k \).
Proof of main result

Lemma 1

Fix integers $n, k \geq 1$, let $x \in \mathcal{G}_n$ and consider the valuation $\chi_k : \mathcal{G}_n \to \mathbb{R}$. Then, $\chi_k(x)$ equals the number of join-irreducible elements $g \in \mathcal{G}_n$ such that $g \leq x$ and $h(g) \leq k$.

Lemma 2

Fix integers $n, k \geq 1$, and let $\varphi \in \text{FORM}_n$. Let $O(\varphi, n, k)$ be the set of equivalence classes $[\mu]_{\equiv^k_n}$ of $(k+1)$-valued assignments such that $\mu(\varphi) = 1$. Further, let $J(\varphi, n, k)$ be the set of join-irreducible elements $x \in \mathcal{G}_n$ such that $x \leq [\varphi]_{\equiv}$ and $h(x) \leq k$. Then there is a bijection between $O(\varphi, n, k)$ and $J(\varphi, n, k)$.
Example

The Gödel algebra G_1, and the values of $\chi = \chi_1 : G_1 \rightarrow \mathbb{R}$ and $\chi_2 : G_1 \rightarrow \mathbb{R}$.
Nilpotent Minimum logic

NM logic NM can be semantically defined as a many-valued logic.
Nilpotent Minimum logic

NM logic NM can be semantically defined as a many-valued logic.

Let \(\text{FORM} \) be the set of formulæ over propositional variables \(X_1, X_2, \ldots \) in the language \(\odot, \land, \lor, \to, \neg, \bot, \top \).
Nilpotent Minimum logic

NM logic \(\text{NM}\) can be semantically defined as a many-valued logic.

Let \(\text{FORM}\) be the set of formulæ over propositional variables \(X_1, X_2, \ldots\) in the language \(\odot, \land, \lor, \rightarrow, \neg, \bot, \top\).

An assignment is a function \(\mu: \text{FORM} \rightarrow [0, 1] \subseteq \mathbb{R}\) with values in the real unit interval such that, for any two \(\alpha, \beta \in \text{FORM}\),

\[
\mu(\alpha \odot \beta) = \begin{cases}
\min\{\mu(\alpha), \mu(\beta)\} & \text{if } \mu(\alpha) + \mu(\beta) > 1 \\
0 & \text{otherwise}
\end{cases}
\]

\[
\mu(\alpha \land \beta) = \min\{\mu(\alpha), \mu(\beta)\}
\]

\[
\mu(\alpha \lor \beta) = \max\{\mu(\alpha), \mu(\beta)\}
\]

\[
\mu(\alpha \rightarrow \beta) = \begin{cases}
1 & \text{if } \mu(\alpha) \leq \mu(\beta) \\
\max\{1 - \mu(\alpha), \mu(\beta)\} & \text{otherwise}
\end{cases}
\]

and \(\mu(\neg \alpha) = 1 - \mu(\alpha), \mu(\bot) = 0, \mu(\top) = 1\).
Nilpotent Minimum logic

NM logic NM can be semantically defined as a many-valued logic.

Let FORM be the set of formulæ over propositional variables X_1, X_2, \ldots in the language $\odot, \land, \lor, \to, \neg, \bot, \top$.

An **assignment** is a function $\mu : \text{FORM} \to [0, 1] \subseteq \mathbb{R}$ with values in the real unit interval such that, for any two $\alpha, \beta \in \text{FORM}$,

$$
\mu(\alpha \odot \beta) = \begin{cases}
\min\{\mu(\alpha), \mu(\beta)\} & \text{if } \mu(\alpha) + \mu(\beta) > 1 \\
0 & \text{otherwise}
\end{cases}
$$

$$
\mu(\alpha \land \beta) = \min\{\mu(\alpha), \mu(\beta)\}
$$

$$
\mu(\alpha \lor \beta) = \max\{\mu(\alpha), \mu(\beta)\}
$$

$$
\mu(\alpha \to \beta) = \begin{cases}
1 & \text{if } \mu(\alpha) \leq \mu(\beta) \\
\max\{1 - \mu(\alpha), \mu(\beta)\} & \text{otherwise}
\end{cases}
$$

and $\mu(\neg \alpha) = 1 - \mu(\alpha)$, $\mu(\bot) = 0$, $\mu(\top) = 1$.

A **tautology** is a formula α such that $\mu(\alpha) = 1$ for every assignment μ.
NM algebras are Nelson algebras satisfying the prelinearity axiom

\[(x \rightarrow y) \lor (y \rightarrow x) = \top.\]
NM algebras

NM algebras are Nelson algebras satisfying the prelinearity axiom

\[(x \rightarrow y) \lor (y \rightarrow x) = \top.\]

They provide the equivalent algebraic semantics of **NM logic**.
NM algebras are Nelson algebras satisfying the prelinearity axiom
\[(x \rightarrow y) \lor (y \rightarrow x) = \top\,.
\]
They provide the equivalent algebraic semantics of NM logic. For an integer \(n \geq 0\), let us write \(\text{NM}_n\) for the Tarski-Lindenbaum algebra of NM logic over the variables \(X_1, \ldots, X_n\), that is, the algebra \(\text{FORM}_n/\equiv\), where \(\equiv\) is the logical equivalence between formulæ.
The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice NM_n. We can now hope that the Euler characteristic of a formula φ can encode logical information similar to that encoded by the characteristic in the case of Gödel logic. Unfortunately, this is not the case. Indeed, take, for instance, the formula $\alpha = (X \leftrightarrow X)^2 \land X$. It turns out that: for every assignments $\mu : \text{FORM}_n \to [0, 1]$, $\mu(\alpha) < 1$, but $\alpha \equiv$ is a join irreducible and thus $\chi(\alpha) = 1$.
Euler characteristic of a formula NM logic

The Euler characteristic of a formula \(\varphi \in \text{Form}_n \), written \(\chi(\varphi) \), is the number \(\chi([\varphi]_{\equiv}) \), where \(\chi \) is the Euler characteristic of the finite distributive lattice \(\text{NM}_n \).

We can now hope that the Euler characteristic of a formula \(\varphi \) can encode logical information similar to that encoded by the characteristic in the case of Gödel logic.
Euler characteristic of a formula NM logic

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice NM_n.

We can now hope that the Euler characteristic of a formula φ can encode logical information similar to that encoded by the characteristic in the case of Gödel logic. Unfortunately, this is not the case. Indeed, take, for instance, the formula

$$\alpha = (X \leftrightarrow X)^2 \land X$$
The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice NM_n.

We can now hope that the Euler characteristic of a formula φ can encode logical information similar to that encoded by the characteristic in the case of Gödel logic. Unfortunately, this is not the case. Indeed, take, for instance, the formula

$$\alpha = (X \leftrightarrow X)^2 \land X$$

It turns out that:
The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_\equiv)$, where χ is the Euler characteristic of the finite distributive lattice \mathcal{NM}_n.

We can now hope that the Euler characteristic of a formula φ can encode logical information similar to that encoded by the characteristic in the case of Gödel logic. Unfortunately, this is not the case. Indeed, take, for instance, the formula

$$\alpha = (X \leftrightarrow X)^2 \land X$$

It turns out that:

- For every assignments $\mu : \text{FORM}_n \rightarrow [0, 1]$, $\mu(\alpha) < 1$, but
Euler characteristic of a formula \(\text{NM logic} \)

The Euler characteristic of a formula \(\varphi \in \text{FORM}_n \), written \(\chi(\varphi) \), is the number \(\chi([\varphi]_{\equiv}) \), where \(\chi \) is the Euler characteristic of the finite distributive lattice \(\text{NM}_n \).

We can now hope that the Euler characteristic of a formula \(\varphi \) can encode logical information similar to that encoded by the characteristic in the case of Gödel logic. Unfortunately, this is not the case. Indeed, take, for instance, the formula

\[
\alpha = (X \leftrightarrow X)^2 \land X
\]

It turns out that:

- For every assignments \(\mu: \text{FORM}_n \rightarrow [0, 1] \), \(\mu(\alpha) < 1 \), but

- \([\alpha]_{\equiv} \) is a join irreducible and thus \(\chi(\alpha) = 1 \).
Positive Euler characteristic of a formula in NM logic

For an element $x \in \mathcal{NM}_n$, say x is idempotent if $x \circ x = x$.
Positive Euler characteristic of a formula in NM logic

For an element $x \in \mathcal{NM}_n$, say x is idempotent if $x \odot x = x$.

Positive Euler characteristic

We write $\chi^+: \mathcal{NM}_n \to \mathbb{R}$ for the unique valuation on \mathcal{NM}_n that satisfies:

1. $\chi^+(x) = 1$ for each idempotent join irreducible element $x \in \mathcal{NM}_n$.
2. $\chi^+(x \odot x) = \chi^+(x)$ for each $x \in \mathcal{NM}_n$;

Further, if $\varphi \in \text{FORM}_n$, we define $\chi^+(\varphi) = \chi^+(\lbrack \varphi \rbrack_\equiv)$.
For an element $x \in \mathcal{NM}_n$, say x is idempotent if $x \odot x = x$.

Positive Euler characteristic

We write $\chi^+: \mathcal{NM}_n \to \mathbb{R}$ for the unique valuation on \mathcal{NM}_n that satisfies:

1. $\chi^+(x) = 1$ for each idempotent join irreducible element $x \in \mathcal{NM}_n$.
2. $\chi^+(x \odot x) = \chi^+(x)$ for each $x \in \mathcal{NM}_n$.

Further, if $\varphi \in \text{FORM}_n$, we define $\chi^+(\varphi) = \chi^+([\varphi]_\equiv)$.

Note that $\alpha \odot \alpha = \bot$, thus $\chi^+(\alpha) = 0$.
Main result

Theorem

Fix $n \geq 1$, and a formula $\varphi \in \text{FORM}_n$.

$\chi^+(\varphi)$ equals the number of assignments $\mu: \text{FORM}_n \rightarrow \{0, \frac{1}{2}, 1\}$ such that $\mu(\varphi) = 1$.
Main result

Theorem
Fix $n \geq 1$, and a formula $\varphi \in \text{FORM}_n$.

$\chi^+(\varphi)$ equals the number of assignments $\mu : \text{FORM}_n \to \{0, \frac{1}{2}, 1\}$ such that $\mu(\varphi) = 1$.

Remark. If φ is a tautology in NM, then $\chi^+(\varphi) = 3^n$.
Proof of main result

Lemma 1
Fix $n \geq 1$. Let $x \in \mathcal{NM}_n$ and consider the valuation $\chi^+: \mathcal{NM}_n \to \mathbb{R}$. Then, $\chi^+(x)$ equals the number of minimal idempotent join-irreducible elements $g \in \mathcal{NM}_n$ such that $g \leq x$.
Proof of main result

Lemma 1

Fix $n \geq 1$. Let $x \in \mathcal{NM}_n$ and consider the valuation $\chi^+: \mathcal{NM}_n \rightarrow \mathbb{R}$. Then, $\chi^+(x)$ equals the number of minimal idempotent join-irreducible elements $g \in \mathcal{NM}_n$ such that $g \leq x$.

Lemma 2

Fix $n \geq 1$, and let $\varphi \in \text{FORM}_n$. There is a bijection between the set of equivalence classes $[\mu]_{\equiv_n}$ of assignments to $\{0, \frac{1}{2}, 1\}$ such that $\mu(\varphi) = 1$ and the set of idempotent join-irreducible elements $x \in \mathcal{NM}_n$ such that $x \leq [\varphi]_{\equiv_n}$.
Further research

- Investigate a *generalised* positive Euler characteristic for NM logic, as done for Gödel logic.
- Investigate the logical content of the Euler characteristic in NM logic.
- Investigate the Euler characteristic in NM^-.
References

Euler Characteristic

Gödel Logic

NM Logic
<table>
<thead>
<tr>
<th>Euler-Klee-Rota Characteristic</th>
<th>Boolean Logic</th>
<th>Gödel logic</th>
<th>NM logic</th>
</tr>
</thead>
</table>

Thank you for your attention.