
Basic notions In this talk Product of forests Enumeration

Products in the category

of forests and p-morphisms

via Delannoy paths on Cartesian products

Pietro Codara

Dipartimento di Informatica, Università degli Studi di Milano

(joint work with Ottavio M. D'Antona, and Vincenzo Marra)

TACL 2015, Ischia (NA) � June 25, 2015



Basic notions In this talk Product of forests Enumeration

Basic notions.



Basic notions In this talk Product of forests Enumeration

A category of forests

A forest is a �nite poset F such that for every x ∈ F , ↓ x is

a chain. A tree is a forest with a bottom element.

An order preserving map f : F → G is a p-morphism (or is

open) i�, for every x ∈ F ,

f (↓ x ) = ↓ f (x ) .

x

f(x)
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In this talk

We show how to compute products in the category F of forests

and p-morphisms.

Dually, via Esakia duality, we show how to compute co-

products of �nitely presented Gödel algebras.

Various techniques to perform this computation are known. Why

should the one presented here be interesting?

In the category F products are not Cartesian.

Our construction is �as Cartesian as possible�.
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Product of forests,
known combinatorial methods.
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Ordered partitions, and merged shu�es

[D'Antona, O.M., and Marra, V., Computing coproducts of �nitely pre-

sented Gödel algebras, Ann. Pure Appl. Logic 142 (2006), 202�211]

An ordered partition σ is a sequence of pairwise disjoint

nonempty sets, called blocks. The union of the blocks of σ

is the support of σ.

Let σ and τ be ordered partitions with disjoint supports.

An ordered partition θ is a shu�e of σ and τ i� σ and τ are

subsequences of θ, and suppθ = suppσ ∪ suppτ.
A merged shu�e is obtained from a shu�e θ, by merging

some consecutive pairs of blocks A,B ∈ θ, with A ∈ σ, and
B ∈ τ.

Example. Let σ = {a |b} and τ = {x }. The merged shu�es of σ

and τ are: {a |b|x }, {a |x |b}, {x |a |b}, {a |bx }, {ax |b}.
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Trees of ordered partitions

Given ordered partitions σ = {A1| . . . |Am }, and τ = {B1| . . . |Bn }

with m ≤ n we write σ ≤ τ i� Ai = Bi for every i ∈ {1, . . . ,m}.

One can label trees with ordered partitions...

∅

x

∅

a

a|b a|c

One can build a tree from a set of ordered partitions. The tree

of merged shu�es of σ = {a |b} and τ = {x } is...

∅

x

x|a

x|a|b

a ax

ax|ba|bx

a|x|ba|b|x

a|b a|x
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Product of forests

Let F = {T1, . . . ,Tr } and G = {U1, . . . ,Us } be forests.

F ×F G = {Ti ×F Uj }, i ∈ {1, . . . , r }, j ∈ {1, . . . , s}.

The problem of describing F ×F G is reduced to that of

describing its trees.

How to compute the product of trees?



Basic notions In this talk Product of forests Enumeration

Product of forests

Let F = {T1, . . . ,Tr } and G = {U1, . . . ,Us } be forests.

F ×F G = {Ti ×F Uj }, i ∈ {1, . . . , r }, j ∈ {1, . . . , s}.

The problem of describing F ×F G is reduced to that of

describing its trees.

How to compute the product of trees?



Basic notions In this talk Product of forests Enumeration

Product of forests

Let F = {T1, . . . ,Tr } and G = {U1, . . . ,Us } be forests.

F ×F G = {Ti ×F Uj }, i ∈ {1, . . . , r }, j ∈ {1, . . . , s}.

The problem of describing F ×F G is reduced to that of

describing its trees.

How to compute the product of trees?



Basic notions In this talk Product of forests Enumeration

Product of trees

Computing the product of trees (an example).

∅

x

∅

a

a|b a|c

×F
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Computing the product of trees (an example).

∅

x

∅

a

a|b a|c

×F

ax|b

ax|c

a|bx

a|cx

a|b|x

a|c|x

a|x|b

a|x|c

x|a|b

x|a|c

MERGED

SHUFFLES
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Product of trees

Computing the product of trees (an example).

∅

x

∅

a

a|b a|c

×F

∅

ax
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a|b|x a|c|x a|x|b a|x|c x|a|b x|a|c

a|b a|c a|x x|a

x
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ax|b

ax|c

a|bx

a|cx
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Product of forests, a recursive construction

[Aguzzoli, S., Bova, S., and Gerla, B., Free Algebra and Functional Re-

presentation for Fuzzy Logics, in Handbook of Mathematical Fuzzy Logic

- Vol. 2, P. Cintula, P. Hájek, C. Noguera, eds., Studies in Logic, Vol. 38,

College Pubblications, London (2011), 713�791]

Let F , G, and H be three forests.

If |F | = 1, then F ×F G ∼= G.

(F +G)×F H ∼= (F ×F H ) + (G ×F H ).

F⊥ ×F G⊥ ∼= ((F ×F G⊥) + (F ×F G) + (F⊥ ×F G))⊥.
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Product of trees, a recursive formula

Computing the product of trees (an example).

×F = ×F ×F ×F+ +
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Products of forests via Delannoy paths on
Cartesian products.
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Classical Delannoy paths, and paths on posets

A Delannoy path is a path on the �rst integer quadrant

N2 ⊆ Z2 that starts from the origin and only uses northward,

eastward, and north-eastward steps.

A (�nite) path on a poset P is a non-empty sequence 〈p1, p2,
. . . , ph〉 of elements of P such that pi < pj whenever i < j .

(A path on P is therefore the same thing as a chain of P .)

For each i ∈ {1, . . . ,n − 1}, the pair pi , pi+1 is called a step

of the path.

Given a poset P , and two elements p, q ∈ P , we write pC q

to indicate that q covers p in P , that is, p < q and for every

s ∈ P , if p ≤ s ≤ q , then either s = p or s = q .
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Delannoy paths on Cartesian products of posets

De�nition

Let P1, . . . ,Pn be posets, and let P = P1 × · · · × Pn be their

(Cartesian) product. Let 〈p1, . . . , ph〉 be a path on P .

The step from pi = (pi ,1, . . . , pi ,n) to pi+1 = (pi+1,1, . . . , pi+1,n)

is a Delannoy step, written pi ≺ pi+1, if and only if there exists

k ∈ {1, . . . ,n} such that pi ,k 6= pi+1,k , and for each j ∈ {1, . . . ,n},

pi ,j E pi+1,j .

The path 〈p1, . . . , ph〉 on P is a Delannoy path if and only if

p1 is a minimal element of P , and for each i ∈ {1, . . . ,n − 1},

pi ≺ pi+1.
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Delannoy paths on Cartesian products of posets

A Delannoy path on P is thus a sequence of Delannoy steps

starting from a minimal element of P .

Delannoy paths on a poset P = P1×· · ·×Pn can be partially

ordered by 〈q1, . . . , qm〉 ≤ 〈p1, . . . , ph〉 if and only if m ≤ h

and qi = pi for each i ∈ {1, . . . ,m}.

We denote by D(P1, . . . ,Pn) the poset of all Delannoy paths

on P .

Clearly, D(P1, . . . ,Pn) is a forest.
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Product in F via Delannoy paths

Theorem

Let F and G be forests. Then D(F ,G) is the product

F ×F G in the category F:

F
πF←− F ×F G

πG−→ G .

Let d ∈ F ×F G, with d = 〈(f1, g1), . . . , (fn , gn)〉. The
projection functions πF : F ×F G → F and πG : F ×F G → G

are de�ned by

πF (d) = fn , and πG(d) = gn .
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Computing the product in F, an example

x

y

a

b

c d

×F

=

〈(x, a)〉
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x

y

a

b

c d

×F

=

〈(x, a)〉

〈(x, a), (y, b)〉

〈. . . , (y, c)〉〈. . . , (y, d)〉

〈(x, a), (y, a)〉〈(x, a), (x, b)〉

〈. . . , (y, c)〉
〈. . . , (y, c)〉

〈. . . , (y, c)〉
〈. . . , (y, c)〉

〈. . . , (y, d)〉
〈. . . , (y, d)〉

〈. . . , (y, d)〉
〈. . . , (y, d)〉

〈. . . , (x, c)〉
〈. . . , (x, d)〉 〈. . . , (y, b)〉 〈. . . , (y, b)〉
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Computing the product in F, an example

〈(x, a)〉

〈(x, a), (y, b)〉

〈. . . , (y, c)〉〈. . . , (y, d)〉

〈(x, a), (y, a)〉〈(x, a), (x, b)〉

〈. . . , (y, c)〉
〈. . . , (y, c)〉

〈. . . , (y, c)〉
〈. . . , (y, c)〉

〈. . . , (y, d)〉
〈. . . , (y, d)〉

〈. . . , (y, d)〉
〈. . . , (y, d)〉

〈. . . , (x, c)〉
〈. . . , (x, d)〉 〈. . . , (y, b)〉 〈. . . , (y, b)〉

x

y

a

b

c d

×
=

(x, a)

(x, b)

(x, c) (x, d)

(y, a)

(y, b)

(y, c) (y, d)
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〈(x, a)〉

〈(x, a), (y, a)〉

(x, a)

(x, b)

(x, c) (x, d)

(y, a)

(y, b)

(y, c) (y, d)



Basic notions In this talk Product of forests Enumeration
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Computing the product in F, an example

〈(x, a)〉

〈(x, a), (y, b)〉

(x, a)

(x, b)

(x, c) (x, d)

(y, a)

(y, b)

(y, c) (y, d)

〈(x, a), (y, b), (y, c)〉
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Enumeration.
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Delannoy numbers

The Delannoy number Dn ,m counts the number of Delannoy

paths from (0, 0) to (n ,m). Delannoy numbers satisfy the fol-

lowing recurrence relation.

Dn ,m = Dn−1,m +Dn ,m−1 +Dn−1,m−1

The following table shows some values of Delannoy numbers.

1 1 1 1 1 1 1 1

1 3 5 7 9 11 13 15

1 5 13 25 41 61 85 113

1 7 25 63 129 231 377 575

1 9 41 129 321 681 1289 2241

1 11 61 231 681 1683 3653 7183
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A Formula for the number of elements of the products

Let T ,U be trees.

|T ×F U | =
∑
i≥0

∑
j≥0

tiujDi ,j ,

where ti is the number of elements at level i of T , and uj is the

number of elements at level j of U .

Example.

x

y

a

b

c d

×F =

= 1·1·D0,0+1·1·D0,1+1·2·D0,2+1·1·D1,0+1·1·D1,1+1·2·D1,2 =

= 1+ 1+ 2+ 1+ 3+ 10 = 18.
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A Formula for the number of elements of the products

|T ×F U | =
∑
i≥0

∑
j≥0

tiujDi ,j

x

y
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×
=

(x, a)

(x, b)

(x, c) (x, d)

(y, a)

(y, b)

(y, c) (y, d)
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Thank you for your attention.
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