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Euler Characteristic
The Euler-Klee-Rota lattice-theoretic characteristic

Valuation

Let L be a (bounded) distributive lattice whose bottom element
is denoted L. A function v: L — R is a valuation if it satisfies
v(L) =0, and

viz)+v(y)=v(zVy)+vizNy)

for all z,y € L.
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Valuation

Let L be a (bounded) distributive lattice whose bottom element
is denoted L. A function v: L — R is a valuation if it satisfies
v(L) =0, and

viz)+v(y)=v(zVy)+vizNy)

for all z,y € L.

Lemma

Every valuation on a finite distributive lattice L 1s uniquely
determined by its values at the join-irreducibles of L.

Recall that z € L is join-trreducible if it is not the bottom of
L,and z =y V z impliesz =y or z = 2 for all y,z € L.



Euler Characteristic

The Euler-Klee-Rota lattice-theoretic characteristic, definition

(V. Klee 1963; G.-C. Rota 1974)

Euler characteristic

The Euler characteristic of a finite distributive lattice L is the
unique valuation x: L — R such that x(z) =1 for any
join-irreducible element z € L.
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The Euler-Klee-Rota lattice-theoretic characteristic

m Let V be a set of vertices, and let P be the poset of
subsets of V ordered by inclusion. The collection .Z of
lower sets of P is a (bounded) distributive lattice under N,
U.

m An element ~ € . is the same thing as a (combinatorial)
simplicial complex: a collection of subsets of V' such that
ACBecl=Acl.

m The Euler Characteristic on .# is the unique valuation
X: % — R such that x() =0, and x(A) = 1 whenever A is
a simplex.

m It turns out that x agrees with the classical Euler
characteristic on each simplicial complex ¥ € Z.



Euler Characteristic
Outline

Euler Characteristic of a formula in classical propositional
logic

B Euler Characteristic of a formula in Gédel logic

H Euler Characteristic of a formula in Nilpotent Minimum
logic
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Euler characteristic of a classical formula

m For an integer n > 0, let FORM,, denote the set of formulae
in classical (propositional) logic over the atomic
propositions Xi,..., X, and the logical constant |
(falsum).

m Question: Is there a sensible notion of Euler
characteristic for a formula ¢ € ForMm, 7

m Writing = for the relation of logical equivalence, the
quotient set FORM,,/ = is naturally a Boolean algebra.

m So we can consider valuations on ForRM,/ =. In particular,
let x be the Euler(-Klee-Rota) characteristic of FOrM,/ =.

m Then we say that the Euler characteristic of @ 1s
x(lol=).
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Euler characteristic of Boolean algebras

m In finite Boolean algebras, join-irreducible=atom.

m S0 if B is a finite Boolean algebra, and z € B is the join of
n atoms, we have x(z) = n by the valuation property.
(The characteristic is additive over disjoint elements.)

m In other words, if B is canonically represented as the
Boolean algebra of all subsets of a set (=the set of atoms of
B), then x(S)=cardinality of S for all S € B.

m Since atoms of FORM,,/ = are in natural bijections with
assignments of truth values u: {Xy,..., X,} — {0, 1}, we
have:

X([@l=) 25 the number of assignments that satisfy ¢. J




Godel logic
Godel logic

Godel logic G can be semantically defined as a many-valued
logic.

Let ForM be the set of formulee over propositional variables
X1, Xs,... in the language A\, V,—,—, 1, T.

An assignment is a function pu: Form — [0,1] C R with values
in the real unit interval such that, for any two «, 3 € FORM,

(e AB) = min{u(a), n(P)}
eV ) = max{u(a), u(p)}

_J1 if wlo) < p(p)
mle— B) = { w(p) otherwise
and p(—o) = ploe — L), p(L) =0, u(T) = 1.
A tautology is a formula « such that p(«) = 1 for every
assignment .



Godel logic
Godel algebras

Godel algebras are Heyting algebras (=Tarski-Lindenbaum
algebras of intuitionistic propositional calculus) satisfying the
prelinearity axiom

(z—=y)V(y—2z)=T.

They provide the equivalent algebraic semantics of Gédel logic.

For an integer n > 0, let us write ¢, for the Tarski-Lindenbaum
algebra of Gddel logic over the variables Xi,..., X, that is, the
algebra FORM,/ =, where = is the logical equivalence between

formulee.
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Euler characteristic of a formula in Gdédel logic

The Euler characteristic of a formula ¢ € FOrRM,,, written
X(@), is the number x([¢@]=), where ¥ is the Euler characteristic
of the finite distributive lattice ¥,,.
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Euler characteristic of a formula in Gdédel logic

The Euler characteristic of a formula ¢ € FOrRM,,, written
X(@), is the number x([¢@]=), where ¥ is the Euler characteristic
of the finite distributive lattice ¥,,.

Does this notion have any logical content?

Theorem

Fix an integer n > 1. For any formula ¢ € ForM,, the Euler
characteristic x(¢) equals the number of Boolean assignments
u: ForM, — [0,1] such that u(e) =1.

In the sense given by this result, the characteristic of a formula
as defined above is a classical notion — it will not distinguish,
for instance, classical from non-classical tautologies.
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Godel (k + 1)-valued logic

We shall use Godel (k + 1)-valued logic, written G 1, for an
integer £ > 1.

Gg41 is obtained from G.,, Godel (infinite-valued) logic
recalled above, by restricting assignments to those taking values
in the set

01 k—1

Vk+1:{0:E)E)-“) Lk )

| &

:1}g[0>1])

that is, to (k + 1)-valued assignments.
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Generalised Euler characteristic of a formula in Goddel logic

For a join-irreducible g € %, say g has height h(g) if the
(unique) chain of join-irreducibles below g in ¥, has cardinality

h(g).

Generalised Euler characteristic

Fix integers n,k > 1. We write x%: ¢4, — R for the unique
valuation on ¥, that satisfies

Xk(g) = min{h(g), k}

for each join-irreducible element g € ¢¥,,. Further, if
¢ € FORM,,, we define xx(¢) = xx(lol=).

v

It turns out that x; is a “k-valued characteristic”, as we proceed
to show.
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n-equivalence

Our next aim is to relate x; with (not necessarily Boolean)
[0, 1]-valued assignments. In general, even if n =1 and the
language boils down to {X;}, there are uncountably many
assignments p: {X1} — [0, 1]. However, in G&del logic there is
the following important reduction to finiteness.
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language boils down to {X;}, there are uncountably many
assignments p: {X1} — [0, 1]. However, in G&del logic there is
the following important reduction to finiteness.

n-equivalence

Fix integers n,k > 1. We say that two (k + 1)-valued
assignments 1 and v are equivalent over the first n variables,
or just n-equivalent, if and only if for all formulae
©(X1y...,Xpn) of Ggi1, (@) =1 if and only if v(p) = 1.

The same definition can be given, mutatis mutandss, for G.

v

In ¥, there are only finitely many equivalence classes of
[0, 1]-valued assignments to n variables.



Godel logic
Main result

Theorem
Fix integers n,k > 1, and a formula ¢ € FORM,,.
X& (@) equals the number of (k + 1)-valued assignments
u: ForM, — [0,1] such that u(¢) =1, up to
n-equivalence.
Moreover, ¢ is a tautology in G if and only if it is a tautology
in Gn+2.




Godel logic

Example

- 2 3

X XV-X 1 2 2 2

XA X 0 0

The Godel algebra ¢, and the values of x =x1: % — R and x2: %1 — R.
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Nilpotent Minimum logic

NM logic NM can be semantically defined as a many-valued
logic.

Let ForM be the set of formulee over propositional variables
X1, Xs,... in the language ©,/\,V,—,—~, L, T.

An assignment is a function p: ForMm — [0,1] C R with values
in the real unit interval such that, for any two «, 3 € FORM,

_J min{p(a),n(B)} if pla) +u(p) >1
hloaoB) = { 0 otherwise

(oA B) = min{p(ec), u(PB)
(Vv B) = max{u(e), u(B)}

(1 if p(x) < u(p)
mlee— B) = { max{l — (o), u(B)} otherwise
and p(—oa) =1—p(a), p(L) =0, u(T)=1.
A tautology is a formula « such that pu(«) = 1 for every
assignment .



NM logic
NM algebras

NM algebras are Nelson algebras satisfying the prelinearity
axiom
(z—>y)V(y—oz)=T.

They provide the equivalent algebraic semantics of NM logic.
For an integer n > 0, let us write .44 ,, for the
Tarski-Lindenbaum algebra of NM logic over the variables
Xi,...,Xp, that is, the algebra FOrRM,,/ =, where = is the
logical equivalence between formule.
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Euler characteristic of a formula in NM logic

The Euler characteristic of a formula ¢ € FORM,,, written

X (), is the number x([@]=), where ¥ is the Euler characteristic
of the finite distributive lattice 44 ,,.
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Euler characteristic of a formula in NM logic

The Euler characteristic of a formula ¢ € FORM,,, written

X (), is the number x([@]=), where ¥ is the Euler characteristic
of the finite distributive lattice 44 ,,.

We can now hope that the Euler characteristic of a formula ¢
can encode logical information similar to that encoded by the
characteristic in the case of Gddel logic.
Unfortunately, this is not the case. Indeed, take, for instance,
the formula

a=(X—-X?2NX

It turns out that:
m For every assignments pu: ForM,, — [0,1], u(x) < 1, but

m [x]= is a join irreducible and thus x(«) = 1.
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We write x": 44, — R for the unique valuation on A% ,
that satisfies:

X (L) =0;
B for each join irreducible element z € A4,

xHg) =L Ho9Ce=g,
0 otherwise.

Further, if ¢ € FORM,,, we define x " (@) = x " ([p]=).
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Idempotent Euler characteristic of a formula in NM logic

For an element z € 44 ,, say z is idempotent if z © z = z.

Idempotent Euler characteristic

We write x": 44, — R for the unique valuation on A% ,
that satisfies:

X (L) =0;
B for each join irreducible element z € A4,

xHg) =L Ho9Ce=g,
0 otherwise.

Further, if ¢ € FORM,,, we define x " (@) = x " ([p]=).

Observe that, if g is a non-idempotent join irreducible element,
then g © g = L.
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NM logic
Main result

Proposition
Fix n > 1. The idempotent Euler characteristic satisfies, for
every ¢ € N ,,

Theorem

For any formula ¢ € FORM,, the valuation x*(¢) equals the
number of assignments pu: ForM, — {0, %, 1} such that

ule) =1.

Remark. If ¢ is a tautology in NM, then x™(¢) = 3™.
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Proof of main result

Lemma 1

Fix integer n > 1, and let £ € A4 ,. Then, x"(z) equals the
number of minimal idempotent join-irreducible elements
g € MM ,, such that g < z.

Lemma 2

Fix n > 1, and let ¢ € FOrM,. Let O(@,n) be the set of
assignments p : ForM, — {0, %, 1} such that pu(¢@) = 1. Then,
there is a bijection between O(@,n) and the set of minimal
idempotent join irreducible elements g € A4, such that

9 < lol=.
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Minimum algebra %1, with the values of x*: ##1 — R.

The Nilpotent



NM™ logic

NM™ is the schematic extension of NM logic obtained adding
the axiom —(—z2)? & (—(—z)?)2.

On the algebraic side we have that an NM algebra is an NM™
algebra if and only if it does not have a negation fixpoint.

Since Definitions given for NM logic easily apply to the NM™
case, we can consider the idempotent Euler characteristic on
free n-generated NM™ algebras.
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Main result

Theorem

Fix an integer n > 1. For any formula ¢ € ForM,, the
valuation x " (¢) equals the number of assignments

u: ForM, — {0, 1} such that pu(¢) =1.
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Main result

Theorem

Fix an integer n > 1. For any formula ¢ € ForM,, the
valuation x " (¢) equals the number of assignments

u: ForM, — {0, 1} such that pu(¢) =1.

Remark. If ¢ is a tautology in NM~, then x (@) = 2".
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Example

The Nilpotent Minimum algebra 477 , with the values of x*: 4%] — R.
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Further research

m Investigate a generalised idempotent Euler characteristic
for NM logic, as done for Gddel logic.

m Investigate the logical content of the Euler characteristic in
NM logic.
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Thank you for your attention.
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