Valuations in Nilpotent Minimum Logic

Pietro Codara

Dipartimento di Informatica, Università degli Studi di Milano

(Joint work with Diego Valota)

ISMVL 2015, Waterloo — May 18th, 2015

Valuation

Let L be a (bounded) distributive lattice whose bottom element is denoted \bot . A function $\nu: L \to \mathbb{R}$ is a valuation if it satisfies $\nu(\bot) = 0$, and

$$\mathbf{v}(x) + \mathbf{v}(y) = \mathbf{v}(x \lor y) + \mathbf{v}(x \land y)$$

for all $x, y \in L$.

Valuation

Let L be a (bounded) distributive lattice whose bottom element is denoted \bot . A function $\nu: L \to \mathbb{R}$ is a valuation if it satisfies $\nu(\bot) = 0$, and

$$\mathbf{v}(x) + \mathbf{v}(y) = \mathbf{v}(x \lor y) + \mathbf{v}(x \land y)$$

for all $x, y \in L$.

Lemma

Every valuation on a finite distributive lattice L is uniquely determined by its values at the join-irreducibles of L.

Recall that $x \in L$ is *join-irreducible* if it is not the bottom of L, and $x = y \lor z$ implies x = y or x = z for all $y, z \in L$.

The Euler-Klee-Rota lattice-theoretic characteristic, definition

```
(V. Klee 1963; G.-C. Rota 1974)
```

Euler characteristic The Euler characteristic of a finite distributive lattice L is the unique valuation $\chi: L \to \mathbb{R}$ such that $\chi(x) = 1$ for any join-irreducible element $x \in L$.

Let V be a set of vertices, and let P be the poset of subsets of V ordered by inclusion. The collection L of lower sets of P is a (bounded) distributive lattice under ∩, ∪.

- Let V be a set of vertices, and let P be the poset of subsets of V ordered by inclusion. The collection L of lower sets of P is a (bounded) distributive lattice under ∩, ∪.
- An element Σ ∈ ℒ is the same thing as a (combinatorial) simplicial complex: a collection of subsets of V such that A ⊆ B ∈ Σ ⇒ A ∈ Σ.

- Let V be a set of vertices, and let P be the poset of subsets of V ordered by inclusion. The collection L of lower sets of P is a (bounded) distributive lattice under ∩, ∪.
- An element Σ ∈ ℒ is the same thing as a (combinatorial) simplicial complex: a collection of subsets of V such that A ⊆ B ∈ Σ ⇒ A ∈ Σ.
- The Euler Characteristic on \mathscr{L} is the unique valuation $\chi: \mathscr{L} \to \mathbb{R}$ such that $\chi(\emptyset) = 0$, and $\chi(\Delta) = 1$ whenever Δ is a simplex.

- Let V be a set of vertices, and let P be the poset of subsets of V ordered by inclusion. The collection L of lower sets of P is a (bounded) distributive lattice under ∩, ∪.
- An element Σ ∈ ℒ is the same thing as a (combinatorial) simplicial complex: a collection of subsets of V such that A ⊆ B ∈ Σ ⇒ A ∈ Σ.
- The Euler Characteristic on \mathscr{L} is the unique valuation $\chi: \mathscr{L} \to \mathbb{R}$ such that $\chi(\emptyset) = 0$, and $\chi(\Delta) = 1$ whenever Δ is a simplex.
- It turns out that χ agrees with the classical Euler characteristic on each simplicial complex $\Sigma \in \mathscr{L}$.

Euler Characteristic	Boolean Logic	Gödel logic	NM logic	$\rm NM^{-}$ logic
Outline				

- Euler Characteristic of a formula in classical propositional logic
- 2 Euler Characteristic of a formula in Gödel logic
- **B** Euler Characteristic of a formula in Nilpotent Minimum logic

For an integer n ≥ 0, let FORM_n denote the set of formulæ in classical (propositional) logic over the atomic propositions X₁,..., X_n and the logical constant ⊥ (falsum).

- For an integer n ≥ 0, let FORM_n denote the set of formulæ in classical (propositional) logic over the atomic propositions X₁,..., X_n and the logical constant ⊥ (falsum).
- Question: Is there a sensible notion of *Euler* characteristic for a formula $\varphi \in FORM_n$?

- For an integer n ≥ 0, let FORM_n denote the set of formulæ in classical (propositional) logic over the atomic propositions X₁,..., X_n and the logical constant ⊥ (falsum).
- Question: Is there a sensible notion of *Euler* characteristic for a formula $\varphi \in FORM_n$?
- Writing \equiv for the relation of logical equivalence, the quotient set FORM_n/ \equiv is naturally a Boolean algebra.

- For an integer n ≥ 0, let FORM_n denote the set of formulæ in classical (propositional) logic over the atomic propositions X₁,..., X_n and the logical constant ⊥ (falsum).
- Question: Is there a sensible notion of *Euler* characteristic for a formula $\varphi \in FORM_n$?
- Writing ≡ for the relation of logical equivalence, the quotient set FORM_n/ ≡ is naturally a Boolean algebra.
- So we can consider valuations on $\operatorname{FORM}_n / \equiv$. In particular, let χ be the Euler(-Klee-Rota) characteristic of $\operatorname{FORM}_n / \equiv$.

- For an integer n ≥ 0, let FORM_n denote the set of formulæ in classical (propositional) logic over the atomic propositions X₁,..., X_n and the logical constant ⊥ (falsum).
- Question: Is there a sensible notion of *Euler* characteristic for a formula $\varphi \in FORM_n$?
- Writing ≡ for the relation of logical equivalence, the quotient set FORM_n/ ≡ is naturally a Boolean algebra.
- So we can consider valuations on $\operatorname{FORM}_n/\equiv$. In particular, let χ be the Euler(-Klee-Rota) characteristic of $\operatorname{FORM}_n/\equiv$.
- Then we say that the Euler characteristic of φ is $\chi([\varphi]_{\equiv})$.

Euler Characteristic	Boolean Logic	Gödel logic	NM logic	$\rm NM^{-}$ logic		
Euler characteristic of Boolean algebras						

In finite Boolean algebras, join-irreducible=atom.

- In finite Boolean algebras, join-irreducible=atom.
- So if B is a finite Boolean algebra, and $x \in B$ is the join of n atoms, we have $\chi(x) = n$ by the valuation property. (The characteristic is additive over disjoint elements.)

- In finite Boolean algebras, join-irreducible=atom.
- So if B is a finite Boolean algebra, and x ∈ B is the join of n atoms, we have χ(x) = n by the valuation property. (The characteristic is additive over disjoint elements.)
- In other words, if B is canonically represented as the Boolean algebra of all subsets of a set (=the set of atoms of B), then χ(S)=cardinality of S for all S ∈ B.

- In finite Boolean algebras, join-irreducible=atom.
- So if B is a finite Boolean algebra, and x ∈ B is the join of n atoms, we have χ(x) = n by the valuation property. (The characteristic is additive over disjoint elements.)
- In other words, if B is canonically represented as the Boolean algebra of all subsets of a set (=the set of atoms of B), then χ(S)=cardinality of S for all S ∈ B.
- Since atoms of $FORM_n / \equiv$ are in natural bijections with assignments of truth values $\mu: \{X_1, \ldots, X_n\} \rightarrow \{0, 1\}$, we have:

- In finite Boolean algebras, join-irreducible=atom.
- So if B is a finite Boolean algebra, and x ∈ B is the join of n atoms, we have χ(x) = n by the valuation property. (The characteristic is additive over disjoint elements.)
- In other words, if B is canonically represented as the Boolean algebra of all subsets of a set (=the set of atoms of B), then χ(S)=cardinality of S for all S ∈ B.
- Since atoms of $FORM_n / \equiv$ are in natural bijections with assignments of truth values $\mu: \{X_1, \ldots, X_n\} \rightarrow \{0, 1\}$, we have:

 $\chi([\phi]_{\equiv})$ is the number of assignments that satisfy ϕ .

Gödel logic \mathbb{G}_∞ can be semantically defined as a many-valued logic.

Let FORM be the set of formulæ over propositional variables X_1, X_2, \ldots in the language $\land, \lor, \rightarrow, \neg, \bot, \top$. An assignment is a function μ : FORM $\rightarrow [0, 1] \subseteq \mathbb{R}$ with values in the real unit interval such that, for any two α , $\beta \in$ FORM,

$$\begin{split} \mu(\alpha \wedge \beta) &= \min\{\mu(\alpha), \mu(\beta)\} \\ \mu(\alpha \vee \beta) &= \max\{\mu(\alpha), \mu(\beta)\} \\ \mu(\alpha \to \beta) &= \begin{cases} 1 & \text{if } \mu(\alpha) \leq \mu(\beta) \\ \mu(\beta) & \text{otherwise} \end{cases} \\ \text{and } \mu(\neg \alpha) &= \mu(\alpha \to \bot), \ \mu(\bot) = 0, \ \mu(\top) = 1. \\ \text{A tautology is a formula } \alpha \text{ such that } \mu(\alpha) = 1 \text{ for every} \\ \text{assignment } \mu. \end{split}$$

Gödel algebras are Heyting algebras (=Tarski-Lindenbaum algebras of intuitionistic propositional calculus) satisfying the prelinearity axiom

$$(x
ightarrow y) ee (y
ightarrow x) = op$$
 .

They provide the equivalent algebraic semantics of Gödel logic. For an integer $n \ge 0$, let us write \mathscr{G}_n for the Tarski-Lindenbaum algebra of Gödel logic over the variables X_1, \ldots, X_n , that is, the algebra FORM $_n/\equiv$, where \equiv is the logical equivalence between formulæ.

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice \mathscr{G}_n .

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice \mathscr{G}_n .

Does this notion have any logical content?

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice \mathscr{G}_n .

Does this notion have any logical content?

Theorem

Fix an integer $n \geq 1$. For any formula $\varphi \in \text{FORM}_n$, the Euler characteristic $\chi(\varphi)$ equals the number of Boolean assignments μ : FORM_n $\rightarrow [0, 1]$ such that $\mu(\varphi) = 1$.

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice \mathscr{G}_n .

Does this notion have any logical content?

Theorem

Fix an integer $n \ge 1$. For any formula $\varphi \in \text{FORM}_n$, the Euler characteristic $\chi(\varphi)$ equals the number of Boolean assignments μ : FORM_n $\rightarrow [0, 1]$ such that $\mu(\varphi) = 1$.

In the sense given by this result, the characteristic of a formula as defined above is a classical notion – it will not distinguish, for instance, classical from non-classical tautologies.

We shall use Gödel (k + 1)-valued logic, written \mathbb{G}_{k+1} , for an integer $k \geq 1$.

We shall use Gödel (k + 1)-valued logic, written \mathbb{G}_{k+1} , for an integer $k \geq 1$. \mathbb{G}_{k+1} is obtained from \mathbb{G}_{∞} , Gödel (infinite-valued) logic recalled above, by restricting assignments to those taking values

in the set

$$V_{k+1} = \{0 = rac{0}{k}, rac{1}{k}, \dots, rac{k-1}{k}, rac{k}{k} = 1\} \subseteq [0,1] \;,$$

that is, to (k + 1)-valued assignments.

For a join-irreducible $g \in \mathscr{G}_n$, say g has height h(g) if the (unique) chain of join-irreducibles below g in \mathscr{G}_n has cardinality h(g).

For a join-irreducible $g \in \mathscr{G}_n$, say g has height h(g) if the (unique) chain of join-irreducibles below g in \mathscr{G}_n has cardinality h(g).

Generalised Euler characteristic

Fix integers $n, k \geq 1$. We write $\chi_k \colon \mathscr{G}_n \to \mathbb{R}$ for the unique valuation on \mathscr{G}_n that satisfies

 $\chi_k(g) = \min\{h(g), k\}$

for each join-irreducible element $g \in \mathscr{G}_n$. Further, if $\varphi \in \text{FORM}_n$, we define $\chi_k(\varphi) = \chi_k([\varphi]_{\equiv})$.

It turns out that χ_k is a "k-valued characteristic", as we proceed to show.

Our next aim is to relate χ_k with (not necessarily Boolean) [0, 1]-valued assignments. In general, even if n = 1 and the language boils down to $\{X_1\}$, there are uncountably many assignments $\mu: \{X_1\} \rightarrow [0, 1]$. However, in Gödel logic there is the following important reduction to finiteness. Our next aim is to relate χ_k with (not necessarily Boolean) [0, 1]-valued assignments. In general, even if n = 1 and the language boils down to $\{X_1\}$, there are uncountably many assignments $\mu: \{X_1\} \rightarrow [0, 1]$. However, in Gödel logic there is the following important reduction to finiteness.

n-equivalence

Fix integers $n, k \ge 1$. We say that two (k + 1)-valued assignments μ and ν are equivalent over the first n variables, or just n-equivalent, if and only if for all formulæ $\varphi(X_1, \ldots, X_n)$ of \mathbb{G}_{k+1} , $\mu(\varphi) = 1$ if and only if $\nu(\varphi) = 1$. The same definition can be given, mutatis mutandis, for \mathbb{G}_{∞} . Our next aim is to relate χ_k with (not necessarily Boolean) [0, 1]-valued assignments. In general, even if n = 1 and the language boils down to $\{X_1\}$, there are uncountably many assignments $\mu: \{X_1\} \rightarrow [0, 1]$. However, in Gödel logic there is the following important reduction to finiteness.

n-equivalence

Fix integers $n, k \ge 1$. We say that two (k + 1)-valued assignments μ and ν are equivalent over the first n variables, or just n-equivalent, if and only if for all formulæ $\varphi(X_1, \ldots, X_n)$ of \mathbb{G}_{k+1} , $\mu(\varphi) = 1$ if and only if $\nu(\varphi) = 1$. The same definition can be given, mutatis mutandis, for \mathbb{G}_{∞} .

In \mathscr{G}_{∞} , there are only finitely many equivalence classes of [0, 1]-valued assignments to n variables.

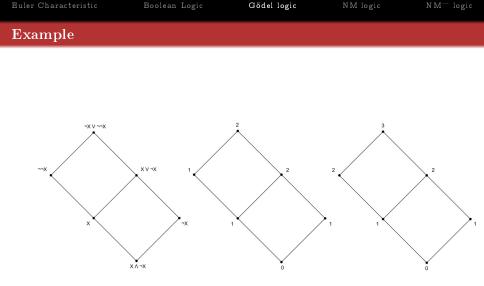
Main result

Theorem

Fix integers $n, k \geq 1$, and a formula $\varphi \in FORM_n$.

 $\chi_k(\phi)$ equals the number of (k + 1)-valued assignments $\mu: \operatorname{Form}_n \to [0, 1]$ such that $\mu(\phi) = 1$, up to *n*-equivalence.

Moreover, φ is a tautology in \mathbb{G}_{∞} if and only if it is a tautology in \mathbb{G}_{n+2} .



The Gödel algebra \mathscr{G}_1 , and the values of $\chi = \chi_1 \colon \mathscr{G}_1 \to \mathbb{R}$ and $\chi_2 \colon \mathscr{G}_1 \to \mathbb{R}$.

Nilpotent Minimum logic

А

NM logic NM can be semantically defined as a many-valued logic.

Let FORM be the set of formulæ over propositional variables X_1, X_2, \ldots in the language $\odot, \land, \lor, \rightarrow, \neg, \bot, \top$. An assignment is a function μ : FORM $\rightarrow [0,1] \subseteq \mathbb{R}$ with values in the real unit interval such that, for any two α , $\beta \in FORM$,

$$\begin{split} \mu(\alpha \odot \beta) &= \left\{ \begin{array}{ll} \min\{\mu(\alpha), \mu(\beta)\} & \text{if } \mu(\alpha) + \mu(\beta) > 1 \\ 0 & \text{otherwise} \end{array} \right. \\ \mu(\alpha \land \beta) &= \min\{\mu(\alpha), \mu(\beta) \\ \mu(\alpha \lor \beta) &= \max\{\mu(\alpha), \mu(\beta)\} \\ \mu(\alpha \to \beta) &= \left\{ \begin{array}{ll} 1 & \text{if } \mu(\alpha) \le \mu(\beta) \\ \max\{1 - \mu(\alpha), \mu(\beta)\} & \text{otherwise} \end{array} \right. \\ \text{and } \mu(\neg \alpha) &= 1 - \mu(\alpha), \ \mu(\bot) = 0, \ \mu(\top) = 1. \\ \text{A tautology is a formula } \alpha \text{ such that } \mu(\alpha) = 1 \text{ for every} \\ \text{assignment } \mu. \end{split}$$

NM algebras are Nelson algebras satisfying the prelinearity axiom

$$(x
ightarrow y) ee (y
ightarrow x) = op$$
 .

They provide the equivalent algebraic semantics of NM logic. For an integer $n \ge 0$, let us write \mathcal{M}_n for the Tarski-Lindenbaum algebra of NM logic over the variables X_1, \ldots, X_n , that is, the algebra $\operatorname{FORM}_n / \equiv$, where \equiv is the logical equivalence between formulæ.

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice \mathcal{NM}_n .

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice \mathcal{NM}_n .

We can now hope that the Euler characteristic of a formula ϕ can encode logical information similar to that encoded by the characteristic in the case of Gödel logic.

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice \mathcal{NM}_n .

We can now hope that the Euler characteristic of a formula ϕ can encode logical information similar to that encoded by the characteristic in the case of Gödel logic.

Unfortunately, this is not the case. Indeed, take, for instance, the formula

$$lpha = (X \leftrightarrow
eg X)^2 \wedge X$$

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice \mathcal{NM}_n .

We can now hope that the Euler characteristic of a formula ϕ can encode logical information similar to that encoded by the characteristic in the case of Gödel logic.

Unfortunately, this is not the case. Indeed, take, for instance, the formula

$$lpha = (X \leftrightarrow
eg X)^2 \wedge X$$

It turns out that:

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice \mathcal{M}_n .

We can now hope that the Euler characteristic of a formula ϕ can encode logical information similar to that encoded by the characteristic in the case of Gödel logic.

Unfortunately, this is not the case. Indeed, take, for instance, the formula

$$lpha = (X \leftrightarrow \neg X)^2 \wedge X$$

It turns out that:

• For every assignments μ : FORM_n \rightarrow [0, 1], $\mu(\alpha) < 1$, but

Euler characteristic of a formula in NM logic

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice \mathcal{NM}_n .

We can now hope that the Euler characteristic of a formula ϕ can encode logical information similar to that encoded by the characteristic in the case of Gödel logic.

Unfortunately, this is not the case. Indeed, take, for instance, the formula

$$lpha = (X \leftrightarrow \neg X)^2 \wedge X$$

It turns out that:

- For every assignments μ : FORM_n \rightarrow [0, 1], $\mu(\alpha) < 1$, but
- $[\alpha]_{\equiv}$ is a join irreducible and thus $\chi(\alpha) = 1$.

For an element $x \in \mathcal{M}_n$, say x is idempotent if $x \odot x = x$.

For an element $x \in \mathcal{M}_n$, say x is idempotent if $x \odot x = x$.

Idempotent Euler characteristic

We write $\chi^+ \colon \mathscr{M}_n \to \mathbb{R}$ for the unique valuation on \mathscr{M}_n that satisfies:

1
$$\chi^+(\perp) = 0$$
;
2 for each join irreducible element $x \in \mathcal{M}_n$,
 $\chi^+(g) = \begin{cases} 1 & \text{if } g \odot g = g, \\ 0 & \text{otherwise.} \end{cases}$
Further, if $\varphi \in \text{FORM}_n$, we define $\chi^+(\varphi) = \chi^+([\varphi]_{\equiv})$.

For an element $x \in \mathcal{M}_n$, say x is idempotent if $x \odot x = x$.

Idempotent Euler characteristic

We write $\chi^+ \colon \mathscr{M}_n \to \mathbb{R}$ for the unique valuation on \mathscr{M}_n that satisfies:

1
$$\chi^+(\perp) = 0$$
;
2 for each join irreducible element $x \in \mathcal{M}_n$,
 $\chi^+(g) = \begin{cases} 1 & \text{if } g \odot g = g, \\ 0 & \text{otherwise.} \end{cases}$
Further, if $\varphi \in \text{FORM}_n$, we define $\chi^+(\varphi) = \chi^+([\varphi]_{\equiv})$.

Observe that, if g is a non-idempotent join irreducible element, then $g \odot g = \bot$.

Proposition

Fix $n \geq 1$. The idempotent Euler characteristic satisfies, for every $x \in \mathscr{N}\!\mathscr{M}_n,$

 $\chi^+(x\odot x) = \chi^+(x)$

Proposition

Fix $n \geq 1$. The idempotent Euler characteristic satisfies, for every $x \in \mathcal{NM}_n$,

 $\chi^+(x\odot x) = \chi^+(x)$

Theorem

For any formula $\varphi \in \text{FORM}_n$, the valuation $\chi^+(\varphi)$ equals the number of assignments μ : $\text{FORM}_n \to \{0, \frac{1}{2}, 1\}$ such that $\mu(\varphi) = 1$.

Proposition

Fix $n \geq 1$. The idempotent Euler characteristic satisfies, for every $x \in \mathcal{NM}_n$,

 $\chi^+(x\odot x) = \chi^+(x)$

Theorem

For any formula $\varphi \in \text{FORM}_n$, the valuation $\chi^+(\varphi)$ equals the number of assignments μ : $\text{FORM}_n \to \{0, \frac{1}{2}, 1\}$ such that $\mu(\varphi) = 1$.

Remark. If φ is a tautology in NM, then $\chi^+(\varphi) = 3^n$.

Lemma 1

Fix integer $n \geq 1$, and let $x \in \mathcal{NM}_n$. Then, $\chi^+(x)$ equals the number of minimal idempotent join-irreducible elements $g \in \mathcal{NM}_n$ such that $g \leq x$.

Lemma 2

Fix $n \geq 1$, and let $\varphi \in \text{FORM}_n$. Let $O(\varphi, n)$ be the set of assignments $\mu : \text{FORM}_n \to \{0, \frac{1}{2}, 1\}$ such that $\mu(\varphi) = 1$. Then, there is a bijection between $O(\varphi, n)$ and the set of minimal idempotent join irreducible elements $g \in \mathcal{M}_n$ such that $g \leq [\varphi]_{\equiv}$.

Example		

Gödel logic

NM logic

Boolean Logic

Euler Characteristic

The Nilpotent Minimum algebra \mathscr{M}_1 , with the values of $\chi^+ \colon \mathscr{M}_1 \to \mathbb{R}$.

NM⁻ is the schematic extension of NM logic obtained adding the axiom $\neg(\neg x^2)^2 \leftrightarrow (\neg(\neg x)^2)^2$.

On the algebraic side we have that an NM algebra is an NM⁻ algebra if and only if it does not have a negation fixpoint.

Since Definitions given for NM logic easily apply to the NM⁻ case, we can consider the idempotent Euler characteristic on free n-generated NM⁻ algebras.

Main result

Theorem

Fix an integer $n \geq 1$. For any formula $\varphi \in \text{FORM}_n$, the valuation $\chi^+(\varphi)$ equals the number of assignments μ : FORM_n $\rightarrow \{0, 1\}$ such that $\mu(\varphi) = 1$.

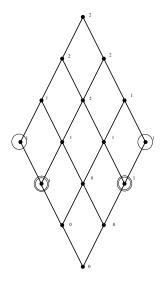
Main result

Theorem

Fix an integer $n \ge 1$. For any formula $\varphi \in \text{FORM}_n$, the valuation $\chi^+(\varphi)$ equals the number of assignments μ : FORM_n $\rightarrow \{0, 1\}$ such that $\mu(\varphi) = 1$.

Remark. If ϕ is a tautology in NM⁻, then $\chi^+(\phi) = 2^n$.

Euler Characteristic	Boolean Logic	Gödel logic	NM logic	${ m NM^{-}}$ logic



The Nilpotent Minimum algebra \mathscr{M}_1^- , with the values of $\chi^+ \colon \mathscr{M}_1^- \to \mathbb{R}$.

Euler Characteristic	Boolean Logic	Gödel logic	NM logic	$\rm NM^{-}$ logic
Further record	h			

- Investigate a generalised idempotent Euler characteristic for NM logic, as done for Gödel logic.
- Investigate the logical content of the Euler characteristic in NM logic.

Euler Characteristic

- Klee, V.: The Euler characteristic in combinatorial geometry. Amer. Math. Monthly 70, 119-127 (1963)
- Rota, G.C.: On the combinatorics of the Euler characteristic. In: Studies in Pure Mathematics, 221–233. Academic Press, London (1971) Gödel Logic
 - Codara, P., D'Antona, O.M., Marra, V.: The Euler Characteristic of a Formula in Gödel Logic. 40th IEEE International Symposium on Multiple-Valued Logic (ISMVL) 2010, 108-112(2010)
- 🗐 Codara, P., D'Antona, O.M., Marra, V.: Valuations in Gödel logic, and the Euler characteristic. Journal of Multiple-Valued Logic and Soft Computing 19(1-3), 71-84 (2012)
- NM Logic
- Codara, P., Valota, D.: Valutations in Nilpotent Minimum Logic. 45th IEEE International Symposium on Multiple-Valued Logic (ISMVL) 2015, 90-95 (2015)

Thank you for your attention.