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The Euler-Klee-Rota lattice-theoretic characteristic

Valuation

Let L be a (bounded) distributive lattice whose bottom element

is denoted ⊥. A function ν : L→ R is a valuation if it satis�es

ν(⊥) = 0, and

ν(x ) + ν(y) = ν(x ∨ y) + ν(x ∧ y)

for all x , y ∈ L.

Lemma

Every valuation on a �nite distributive lattice L is uniquely

determined by its values at the join-irreducibles of L.

Recall that x ∈ L is join-irreducible if it is not the bottom of

L, and x = y ∨ z implies x = y or x = z for all y , z ∈ L.
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The Euler-Klee-Rota lattice-theoretic characteristic, de�nition

(V. Klee 1963; G.-C. Rota 1974)

Euler characteristic

The Euler characteristic of a �nite distributive lattice L is the

unique valuation χ : L→ R such that χ(x ) = 1 for any

join-irreducible element x ∈ L.
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The Euler-Klee-Rota lattice-theoretic characteristic

Let V be a set of vertices, and let P be the poset of

subsets of V ordered by inclusion. The collection L of

lower sets of P is a (bounded) distributive lattice under ∩,
∪.

An element Σ ∈ L is the same thing as a (combinatorial)

simplicial complex: a collection of subsets of V such that

A ⊆ B ∈ Σ⇒ A ∈ Σ.
The Euler Characteristic on L is the unique valuation

χ : L → R such that χ(∅) = 0, and χ(∆) = 1 whenever ∆ is

a simplex.

It turns out that χ agrees with the classical Euler

characteristic on each simplicial complex Σ ∈ L .
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Outline

1 Euler Characteristic of a formula in classical propositional

logic

2 Euler Characteristic of a formula in Gödel logic

3 Euler Characteristic of a formula in Nilpotent Minimum

logic
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Euler characteristic of a classical formula

For an integer n ≥ 0, let Formn denote the set of formulæ

in classical (propositional) logic over the atomic

propositions X1, . . . ,Xn and the logical constant ⊥
(falsum).

Question: Is there a sensible notion of Euler

characteristic for a formula ϕ ∈ Formn ?

Writing ≡ for the relation of logical equivalence, the

quotient set Formn/ ≡ is naturally a Boolean algebra.

So we can consider valuations on Formn/ ≡. In particular,

let χ be the Euler(-Klee-Rota) characteristic of Formn/ ≡.
Then we say that the Euler characteristic of ϕ is

χ([ϕ]≡).
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Euler characteristic of Boolean algebras

In �nite Boolean algebras, join-irreducible=atom.

So if B is a �nite Boolean algebra, and x ∈ B is the join of

n atoms, we have χ(x ) = n by the valuation property.

(The characteristic is additive over disjoint elements.)

In other words, if B is canonically represented as the

Boolean algebra of all subsets of a set (=the set of atoms of

B), then χ(S)=cardinality of S for all S ∈ B .

Since atoms of Formn/ ≡ are in natural bijections with

assignments of truth values µ : {X1, . . . ,Xn }→ {0, 1}, we

have:

χ([ϕ]≡) is the number of assignments that satisfy ϕ.
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Gödel logic

Gödel logic G∞ can be semantically de�ned as a many-valued

logic.

Let Form be the set of formulæ over propositional variables

X1,X2, . . . in the language ∧,∨,→,¬,⊥,>.
An assignment is a function µ : Form→ [0, 1] ⊆ R with values

in the real unit interval such that, for any two α, β ∈ Form,
µ(α∧ β) = min{µ(α), µ(β)}

µ(α∨ β) = max{µ(α), µ(β)}

µ(α→ β) =

{
1 if µ(α) ≤ µ(β)
µ(β) otherwise

and µ(¬α) = µ(α→ ⊥), µ(⊥) = 0, µ(>) = 1.

A tautology is a formula α such that µ(α) = 1 for every

assignment µ.
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Gödel algebras

Gödel algebras are Heyting algebras (=Tarski-Lindenbaum

algebras of intuitionistic propositional calculus) satisfying the

prelinearity axiom

(x → y)∨ (y → x ) = > .

They provide the equivalent algebraic semantics of Gödel logic.

For an integer n ≥ 0, let us write Gn for the Tarski-Lindenbaum

algebra of Gödel logic over the variables X1, . . . ,Xn , that is, the

algebra Formn/ ≡, where ≡ is the logical equivalence between

formulæ.
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Euler characteristic of a formula Gödel logic

Euler characteristic of a formula in Gödel logic

The Euler characteristic of a formula ϕ ∈ Formn , written

χ(ϕ), is the number χ([ϕ]≡), where χ is the Euler characteristic

of the �nite distributive lattice Gn .

Does this notion have any logical content?

Theorem

Fix an integer n ≥ 1. For any formula ϕ ∈ Formn , the Euler

characteristic χ(ϕ) equals the number of Boolean assignments

µ : Formn → [0, 1] such that µ(ϕ) = 1.

In the sense given by this result, the characteristic of a formula

as de�ned above is a classical notion � it will not distinguish,

for instance, classical from non-classical tautologies.
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Gödel (k + 1)-valued logic

We shall use Gödel (k + 1)-valued logic, written Gk+1, for an

integer k ≥ 1.

Gk+1 is obtained from G∞, Gödel (in�nite-valued) logic

recalled above, by restricting assignments to those taking values

in the set

Vk+1 = {0 =
0

k
,
1

k
, . . . ,

k − 1

k
,
k

k
= 1} ⊆ [0, 1] ,

that is, to (k + 1)-valued assignments.
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Generalised Euler characteristic of a formula in Gödel logic

For a join-irreducible g ∈ Gn , say g has height h(g) if the

(unique) chain of join-irreducibles below g in Gn has cardinality

h(g).

Generalised Euler characteristic

Fix integers n , k ≥ 1. We write χk : Gn → R for the unique

valuation on Gn that satis�es

χk (g) = min {h(g), k }

for each join-irreducible element g ∈ Gn . Further, if

ϕ ∈ Formn , we de�ne χk (ϕ) = χk ([ϕ]≡).

It turns out that χk is a �k -valued characteristic�, as we proceed

to show.
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n-equivalence

Our next aim is to relate χk with (not necessarily Boolean)

[0, 1]-valued assignments. In general, even if n = 1 and the

language boils down to {X1}, there are uncountably many

assignments µ : {X1}→ [0, 1]. However, in Gödel logic there is

the following important reduction to �niteness.

n-equivalence

Fix integers n , k ≥ 1. We say that two (k + 1)-valued

assignments µ and ν are equivalent over the �rst n variables,

or just n-equivalent, if and only if for all formulæ

ϕ(X1, . . . ,Xn) of Gk+1, µ(ϕ) = 1 if and only if ν(ϕ) = 1.

The same de�nition can be given, mutatis mutandis, for G∞.

In G∞, there are only �nitely many equivalence classes of

[0, 1]-valued assignments to n variables.
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Main result

Theorem

Fix integers n , k ≥ 1, and a formula ϕ ∈ Formn .

χk (ϕ) equals the number of (k + 1)-valued assignments

µ : Formn → [0, 1] such that µ(ϕ) = 1, up to

n-equivalence.

Moreover, ϕ is a tautology in G∞ if and only if it is a tautology

in Gn+2.
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Example

The Gödel algebra G1, and the values of χ = χ1 : G1 → R and χ2 : G1 → R.
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Nilpotent Minimum logic

NM logic NM can be semantically de�ned as a many-valued

logic.

Let Form be the set of formulæ over propositional variables

X1,X2, . . . in the language �,∧,∨,→,¬,⊥,>.
An assignment is a function µ : Form→ [0, 1] ⊆ R with values

in the real unit interval such that, for any two α, β ∈ Form,

µ(α� β) =
{

min{µ(α), µ(β)} if µ(α) + µ(β) > 1

0 otherwise

µ(α∧ β) = min{µ(α), µ(β)

µ(α∨ β) = max{µ(α), µ(β)}

µ(α→ β) =

{
1 if µ(α) ≤ µ(β)
max{1− µ(α), µ(β)} otherwise

and µ(¬α) = 1− µ(α), µ(⊥) = 0, µ(>) = 1.

A tautology is a formula α such that µ(α) = 1 for every

assignment µ.
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NM algebras

NM algebras are Nelson algebras satisfying the prelinearity

axiom

(x → y)∨ (y → x ) = > .

They provide the equivalent algebraic semantics of NM logic.

For an integer n ≥ 0, let us write NM n for the

Tarski-Lindenbaum algebra of NM logic over the variables

X1, . . . ,Xn , that is, the algebra Formn/ ≡, where ≡ is the

logical equivalence between formulæ.
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Euler characteristic of a formula NM logic

Euler characteristic of a formula in NM logic

The Euler characteristic of a formula ϕ ∈ Formn , written

χ(ϕ), is the number χ([ϕ]≡), where χ is the Euler characteristic

of the �nite distributive lattice NM n .

We can now hope that the Euler characteristic of a formula ϕ

can encode logical information similar to that encoded by the

characteristic in the case of Gödel logic.

Unfortunately, this is not the case. Indeed, take, for instance,

the formula

α = (X ↔ ¬X )2 ∧X

It turns out that:

For every assignments µ : Formn → [0, 1], µ(α) < 1, but

[α]≡ is a join irreducible and thus χ(α) = 1.
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can encode logical information similar to that encoded by the

characteristic in the case of Gödel logic.

Unfortunately, this is not the case. Indeed, take, for instance,

the formula

α = (X ↔ ¬X )2 ∧X

It turns out that:

For every assignments µ : Formn → [0, 1], µ(α) < 1, but

[α]≡ is a join irreducible and thus χ(α) = 1.



Euler Characteristic Boolean Logic Gödel logic NM logic NM− logic

Idempotent Euler characteristic of a formula in NM logic

For an element x ∈ NM n , say x is idempotent if x � x = x .

Idempotent Euler characteristic

We write χ+ : NM n → R for the unique valuation on NM n

that satis�es:

1 χ+(⊥) = 0 ;

2 for each join irreducible element x ∈ NM n ,

χ+(g) =

{
1 if g � g = g ,

0 otherwise.

Further, if ϕ ∈ Formn , we de�ne χ
+(ϕ) = χ+([ϕ]≡).

Observe that, if g is a non-idempotent join irreducible element,

then g � g = ⊥.
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Idempotent Euler characteristic of a formula in NM logic
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then g � g = ⊥.
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Main result

Proposition

Fix n ≥ 1. The idempotent Euler characteristic satis�es, for

every x ∈ NM n ,

χ+(x � x ) = χ+(x )

Theorem

For any formula ϕ ∈ Formn , the valuation χ
+(ϕ) equals the

number of assignments µ : Formn → {0, 12 , 1} such that

µ(ϕ) = 1.

Remark. If ϕ is a tautology in NM, then χ+(ϕ) = 3n .
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Proof of main result

Lemma 1

Fix integer n ≥ 1, and let x ∈ NM n . Then, χ
+(x ) equals the

number of minimal idempotent join-irreducible elements

g ∈ NM n such that g ≤ x .

Lemma 2

Fix n ≥ 1, and let ϕ ∈ Formn . Let O(ϕ,n) be the set of

assignments µ : Formn → {0, 12 , 1} such that µ(ϕ) = 1. Then,

there is a bijection between O(ϕ,n) and the set of minimal

idempotent join irreducible elements g ∈ NM n such that

g ≤ [ϕ]≡.
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Example

3

3 2 3

2 2 2 3
2

2

2 1 2 2 2 2 2
1 2

1 1 2 1 2 1 1 1 2
1

1

1 1 1 0 1 1 1 1

1 0 0 1 0 1

0
0

0

0

The Nilpotent Minimum algebra NM 1, with the values of χ+ : NM 1 → R.
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NM− logic

NM− is the schematic extension of NM logic obtained adding

the axiom ¬(¬x 2)2 ↔ (¬(¬x )2)2.

On the algebraic side we have that an NM algebra is an NM−

algebra if and only if it does not have a negation �xpoint.

Since De�nitions given for NM logic easily apply to the NM−

case, we can consider the idempotent Euler characteristic on

free n-generated NM− algebras.
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Main result

Theorem

Fix an integer n ≥ 1. For any formula ϕ ∈ Formn , the

valuation χ+(ϕ) equals the number of assignments

µ : Formn → {0, 1} such that µ(ϕ) = 1.

Remark. If ϕ is a tautology in NM−, then χ+(ϕ) = 2n .
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Main result

Theorem

Fix an integer n ≥ 1. For any formula ϕ ∈ Formn , the

valuation χ+(ϕ) equals the number of assignments
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Example
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2 2

21
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1 1 1 1

1
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0 0

0

The Nilpotent Minimum algebra NM−
1 , with the values of χ+ : NM−

1 → R.
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Further research

Investigate a generalised idempotent Euler characteristic

for NM logic, as done for Gödel logic.

Investigate the logical content of the Euler characteristic in

NM logic.
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Thank you for your attention.
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