INDISCERNIBILITY RELATIONS COMPATIBLE WITH A PARTIALLY ORDERED SET: AN EXAMPLE

PIETRO CODARA

We follow the example introduced in [3]. Consider the following table, reporting a collection of houses for sale in the city of Merate, Lecco, Italy.

House	Price (€)	Size (m^2)	District	Condition	Rooms
a	200.000	50	Centre	excellent	2
b	170.000	70	Centre	poor	3
с	185.000	53	Centre	very good	2
d	190.000	68	Sartirana	very good	3
е	140.000	60	Sartirana	good	2
f	155.000	65	Novate	good	2
g	250.000	85	Novate	excellent	3
h	240.000	75	Novate	excellent	3

In this simple information table eight distinct houses are characterised by five attributes: Price, Size, District, Condition, and Rooms. Let $U = \{a, b, c, d, e, f, g, h\}$ be the set of all houses. We choose the subset of attributes $O = \{Price, Size\}$ to define on U a partial order \leq as follow. For each $x, y \in U$,

 $x \le y$ if and only if $Price(x) \le Price(y)$, $Size(x) \le Size(y)$.

We obtain the poset $P = (U, \leq)$ displayed in Figure 1.

FIGURE 1. $P = (U, \leq)$.

We denote by $\mathcal{P}(P,\bar{A})$ the information system having P as universe, and $\bar{A} = \{\text{District}, \text{Condition, Rooms}\}$ as the set of attributes. Let $D = \{\text{District}\}, C = \{\text{Condition}\}, \text{ and } R = \{\text{Rooms}\}, \text{ and denote by } \pi_D, \pi_C, \text{ and } \pi_R \text{ the partitions } U/I_D, U/I_C, \text{ and } U/I_R \text{ respectively.} \}$

Moreover, let $DR = D \cup R$, $CR = C \cup R$, $DC = D \cup C$, $DCR = D \cup C \cup R$ and let $\pi_{DR} = U/I_{DR}$, $\pi_{CR} = U/I_{CR}$, $\pi_{DC} = U/I_{DC}$, $\pi_{DCR} = U/I_{DCR}$. We have:

 $\begin{aligned} \pi_D &= \{\{a, b, c\}, \{d, e\}, \{f, g, h\}\}; \\ \pi_R &= \{\{a, c, e, f\}, \{b, d, g, h\}\}; \\ \pi_{CR} &= \{\{a, c\}, \{b\}, \{c\}, \{d\}, \{e, f\}, \{g, h\}\}; \\ \pi_{DR} &= \{\{a, c\}, \{b\}, \{d\}, \{e\}, \{f\}, \{g, h\}\}; \\ \pi_{DC} &= \pi_{DCR} = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}\}; \\ \pi_{DC} &= \pi_{DCR} = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g, h\}\}. \end{aligned}$

Furthermore,

$$\pi_{\emptyset} = U/I_{\emptyset} = \{\{a, b, c, d, e, f, g, h\}\}.$$

Figure 2 represents on *P* all the partitions listed above.

FIGURE 2. Partitions of *P* induced by indiscernibility relations.

It can be checked that all the partitions, expect π_D , are compatible with *P*.

References

- Codara, P.: A theory of partitions of partially ordered sets. PhD thesis, Università degli Studi di Milano, Italy (2008)
- [2] Codara, P.: Partitions of a Finite Partially Ordered Set. In Damiani, E., D'Antona, O., Marra, V., Palombi, F., eds.: From Combinatorics to Philosophy. The Legacy of G.-C. Rota. Springer US, New York (2009) 45–59
- [3] Codara, P.: Indiscernibility Relations on Partially Ordered Sets. In: IEEE International Conference on Granular Computing (GrC) 2011. (2011) 150–155
- [4] Codara, P.: On the Structure of Indiscernibility Relations Compatible with a Partially Ordered Set. In: L. Rutkowski et al., eds.: ICAISC 2012, Part II. LNCS, vol. 7268, Springer (2012) 47–55
- [5] Codara, P., D'Antona, O.M., Marra, V.: Open Partitions and Probability Assignments in Gödel Logic. In: ECSQARU. LNCS (LNAI), vol. 5590, Springer (2009) 911–922

(Pietro Codara) Dipartimento di Informatica, via Comelico 39/41, I-20135 Milano, Italy *E-mail address*: codara@dico.unimi.it