On the Structure of Indiscernibility Relations Compatible with a Partially Ordered Set

Pietro Codara

Dipartimento di Informatica, Università degli Studi di Milano

Partitions of partially ordered sets

Monotone partition

A monotone partition of a poset (P, \leq) is the poset of equivalence classes induced by a preorder \leq on *P* such that $\leq \subseteq \leq$.

Regular partition

A regular partition of a poset (P, \leq) is the poset of equivalence classes induced by a preorder \leq on *P* such that $\leq \subseteq \leq$, and satisfying

 $\leq = \operatorname{tr}(\leq \langle \rho \rangle),$

where tr(R) denotes the transitive closure of the relation R, and ρ is a binary relation defined by

 $\rho = \{ (x, y) \in P \times P \mid x \leq y, x \leq y, y \leq x \}.$

All monotone (regular) partitions of a poset P.

Indiscernibility relations compatible with a partially ordered set

Indiscernibility relations - compatibility

Let $P = (U, \leq)$ be a poset, let I_B be an indiscernibility relation on U and let $\pi = U/I_B$. We say I_B is compatible with P if there exists a monotone partition (π, \leq) of P. Further, if I_B is compatible with P we say that π admits an extension to a monotone partition of *P*.

Compatibility criterion

Let (P, \leq) be a poset and let π be a partition of the set P. For $x, y \in P$, x is blockwise under y with respect to π , written $x \leq_{\pi} y$, if and only if there exists a sequence $x = x_0, y_0, x_1, y_1, \dots, x_n, y_n = y \in P$ satisfying the following conditions.

(1) For all
$$i \in \{0, ..., n\}, [x_i] = [y_i]$$
. (2) For all $i \in \{0, ..., n-1\}, y_i \leq x_{i+1}$.

Let $P = (U, \leq)$ be a poset, let I_B be an indiscernibility relation on U and let $\pi = U/I_B$. Then, I_B is compatible with P if and only if, for all $x, y \in P$, $x \leq_{\pi} y$ and $y \leq_{\pi} x$ imply $[x]_{\pi} = [y]_{\pi}$.

Let $P = (U, \leq)$ be a poset, let I_B be an indiscernibility relation on U and let $\pi = U/I_B$. If π is compatible with P, then π admits a unique extension to a regular partition of P.

11th International Conference on Artificial Intelligence and Soft Computing (ICAISC) - April 30, 2012

On the Structure of Indiscernibility Relations Compatible with a Partially Ordered Set

Pietro Codara

Dipartimento di Informatica, Università degli Studi di Milano

The lattices of partitions of a partially ordered set

Monotone partition lattice

The collection of monotone partitions of (P, \leq) is a lattice when partially ordered by set-theoretic inclusion between the corresponding preorders. Specifically, let π_1 and π_2 be the monotone partitions of (P, \leq) , induced by the preorders \leq_1 and \leq_2 , respectively. Then $\pi_1 \wedge_m \pi_2$ and $\pi_1 \vee_m \pi_2$ (the lattice meet and join) are the partitions induced, respectively, by the preorders:

 $\leq_1 \wedge_m \leq_2 = \leq_1 \cap \leq_2, \quad \leq_1 \vee_m \leq_2 = \operatorname{tr}(\leq_1 \cup \leq_2).$

Regular partition lattice

The collection of regular partitions of (P, \leq) is a lattice when partially ordered by set-theoretic inclusion between the corresponding quasiorders. Specifically, let π_1 and π_2 be the regular partitions of (P, \leq) , induced by the preorders \leq_1 and \leq_2 , respectively, and let $\tau = \{ (x, y) \in (\leq_1 \cap \leq_2) \setminus \leq | y \not\leq_1 x \text{ or } y \not\leq_2 x \}$ Then $\pi_1 \wedge_r \pi_2$ and $\pi_1 \vee_r \pi_2$ (the lattice meet and join) are the partitions induced, respectively, by the preorders:

$$\leq_1 \wedge_r \leq_2 = \operatorname{tr}((\leq_1 \cap \leq_2) \setminus \tau), \quad \leq_1 \vee_r \leq_2 = \operatorname{tr}(\leq_1 \cup \leq_2).$$

References

- © Codara, P.: A theory of partitions of partially ordered sets. PhD thesis, Università degli Studi di Milano, Italy (2008)
- Codara, P.: Partitions of a Finite Partially Ordered Set. In Damiani, E., D'Antona, O., Marra, V., Palombi, F., eds.: From Combinatorics to Philosophy. The Legacy of G.-C. Rota. Springer US, New York (2009) 45–59
- © Codara, P.: Indiscernibility Relations on Partially Ordered Sets. In: IEEE International Conference on Granular Computing (GrC) 2011. (2011) 150–155
- Codara, P.: On the Structure of Indiscernibility Relations Compatible with a Partially Ordered Set. In: L. Rutkowski et al., eds.: ICAISC 2012, Part II. LNCS, vol. 7268, Springer (2012) 47–55
- Codara, P., D'Antona, O.M., Marra, V.: Open Partitions and Probability Assignments in Gödel Logic. In: ECSQARU. LNCS (LNAI), vol. 5590, Springer (2009) 911-922

11th International Conference on Artificial Intelligence and Soft Computing (ICAISC) - April 30, 2012