Indiscernibility Relations on Partially Ordered Sets

Pietro Codara

Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano

GrC 2011, Kaohsiung, Taiwan - November 8, 2011

The case of sets	Partitions of posets	The case of posets	Further Research
Outline			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Indiscernibility relation, the case of sets
- 2 Partitions of a partially ordered set
- Indiscernibility relation, the case of posets
- ④ Further research

The case of sets	Partitions of posets	The case of posets	Further Research
Indiscernibility	relation		

Let $\mathcal{A} = (U, A)$ be a pair of nonempty finite sets, where U is the collection of objects (the *universe*), and A is a set of *attributes*.

ション ふゆ マ キャット マックシン

Indiscernibility relation

Let $\mathcal{A} = (U, A)$ be a pair of nonempty finite sets, where U is the collection of objects (the *universe*), and A is a set of *attributes*.

Indiscernibility relation

With a subset of attributes $B \subseteq A$ we associate an *indiscernibility relation* on U, denoted by I_B and defined by

$$(x, y) \in I_B$$
 if and only if $a(x) = a(y)$,

ション ふゆ マ キャット マックシン

for each $a \in A$, and for each $x, y \in U$.

Indiscernibility relation

Let $\mathcal{A} = (U, A)$ be a pair of nonempty finite sets, where U is the collection of objects (the *universe*), and A is a set of *attributes*.

Indiscernibility relation

With a subset of attributes $B \subseteq A$ we associate an *indiscernibility relation* on U, denoted by I_B and defined by

 $(x,y)\in I_B$ if and only if a(x)=a(y),

for each $a \in A$, and for each $x, y \in U$.

"The indiscernibility relation generated in this way is the mathematical basis of rough set theory." [Pawlak]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへで

Indiscernibility relation as partition

Clearly, I_B is an equivalence relation on U, and thus induces on U a partition $\pi = U/I_B$.

Indiscernibility relation as partition

Clearly, I_B is an equivalence relation on U, and thus induces on U a partition $\pi = U/I_B$.

We can look at the relation I_B as a way to express the fact that we are unable to distinguish individual objects, but we are forced, instead, to think in terms of granules, *i.e.*,

Indiscernibility relation as partition

Clearly, I_B is an equivalence relation on U, and thus induces on U a partition $\pi = U/I_B$.

We can look at the relation I_B as a way to express the fact that we are unable to distinguish individual objects, but we are forced, instead, to think in terms of granules, *i.e.*, in terms of blocks of a partition.

Indiscernibility relation as partition

Clearly, I_B is an equivalence relation on U, and thus induces on U a partition $\pi = U/I_B$.

We can look at the relation I_B as a way to express the fact that we are unable to distinguish individual objects, but we are forced, instead, to think in terms of granules, *i.e.*, in terms of blocks of a partition.

In symbols, if $x, y \in U$, x is distinguishable from y if and only if $[x]_{\pi} \neq [y]_{\pi}$.

The case of sets	Partitions of posets	The case of posets	Further Research
From sets to	posets		

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The case of sets	Partitions of posets	The case of posets	Further Research
From sets to	posets		

An indiscernibility relation I_B on P induces a partition π on U, but...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The case of sets	Partitions of posets	The case of posets	Further Research
From sets to	posets		

An indiscernibility relation I_B on P induces a partition π on U, but...

does it also induce a partition π on P?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The case of sets	Partitions of posets	The case of posets	Further Research
From sets to	posets		

An indiscernibility relation I_B on P induces a partition π on U, but...

does it also induce a partition π on P?

To answer this question we need a definition of partition of a poset.

ション ふゆ アメリア ション ひゃく

The case of sets	Partitions of posets	The case of posets	Further Research
Dantition of	a posst introductio		

Partition of a poset, introduction

A partition of a set can be defined in terms of *fibres* of a surjection: a partition of a set A is the set $\{f^{-1}(y) \mid y \in B\}$ of fibres of a surjection $f : A \to B$.

ション ふゆ マ キャット マックシン

The case of sets	Partitions of posets	The case of posets	Further Research
Partition of a	a poset, introductio	'n	

A partition of a set can be defined in terms of *fibres* of a surjection: a partition of a set A is the set $\{f^{-1}(y) \mid y \in B\}$ of fibres of a surjection $f : A \to B$.

Such kind of definition arise naturally when thinking in terms of categories, *i.e.*, in terms of objects and maps between them.

うして ふゆう ふほう ふほう ふしつ

The case of sets	Partitions of posets	The case of posets	Further Research
Partition of a	a poset introductio	'n	

A partition of a set can be defined in terms of *fibres* of a surjection: a partition of a set A is the set $\{f^{-1}(y) \mid y \in B\}$ of fibres of a surjection $f : A \to B$.

Such kind of definition arise naturally when thinking in terms of categories, *i.e.*, in terms of objects and maps between them.

In such framework, we can provide definitions of partition of a poset.

うして ふゆう ふほう ふほう ふしつ

The case of sets	Partitions of posets	The case of posets	Further Research
Partition of	a poset, introduction		

A partition of a set can be defined in terms of *fibres* of a surjection: a partition of a set A is the set $\{f^{-1}(y) \mid y \in B\}$ of fibres of a surjection $f : A \to B$.

Such kind of definition arise naturally when thinking in terms of categories, *i.e.*, in terms of objects and maps between them.

In such framework, we can provide definitions of partition of a poset.

- P. Codara, "A theory of partitions of partially ordered sets," Ph.D. dissertation, Università degli Studi di Milano, Italy, 2008.
- —, "Partitions of a Finite Partially Ordered Set," in From Combinatorics to Philosophy. The Legacy of G.-C. Rota, E. Damiani, O. D'Antona, V. Marra, and F. Palombi, Eds. New York: Springer US, 2009, pp. 45-59.
- P. Codara, O. M. D'Antona, and V. Marra, "Open Partitions and Probability Assignments in Gödel Logic," in *ECSQARU*, ser. LNCS (LNAI), vol. 5590. Springer, 2009, pp. 911-922.

The case of sets	Partitions of posets	The case of posets	Further Research
Partition of a	a poset (1)		

Consider the category Pos of posets and *order-preserving* maps (also called *monotone* maps).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

The case of sets	Partitions of posets	The case of posets	Further Research
Partition of a	poset (1)		

Consider the category Pos of posets and order-preserving maps (also called monotone maps).

In Pos we need to consider two different types of surjections. In categorical terms we need to make distinction between *epimorphisms*, and a subclass of epimorphisms, called *regular epimorphisms*. (In the category of sets these two classes coincide.)

ション ふゆ マ キャット マックシン

Consider the category Pos of posets and *order-preserving* maps (also called *monotone* maps).

In Pos we need to consider two different types of surjections. In categorical terms we need to make distinction between *epimorphisms*, and a subclass of epimorphisms, called *regular epimorphisms*. (In the category of sets these two classes coincide.)

Such distinction leads us to introduce two different notions of partition of a poset, one based on the use of epimorphisms, the other based on the use of regular epimorphisms.

The case of sets	Partitions of posets	The case of posets	Further Research
Blockwise pr	eorder		

Blockwise preorder

Let (P, \leq) be a poset and let π be a partition of the set P. For $x, y \in P$, x is blockwise under y with respect to π , written $x \leq_{\pi} y$, if and only if there exists a sequence $x = x_0, y_0, x_1, y_1, \ldots, x_n, y_n = y \in P$ satisfying the following conditions.

うして ふゆう ふほう ふほう ふしつ

(1) For all
$$i \in \{0, \ldots, n\}$$
, $[x_i] = [y_i]$.

(2) For all $i \in \{0, \ldots, n-1\}, y_i \leqslant x_{i+1}$.

The case of sets	Partitions of posets	The case of posets	Further Research
Blockwise pr	eorder		

Blockwise preorder

Let (P, \leq) be a poset and let π be a partition of the set P. For $x, y \in P$, x is blockwise under y with respect to π , written $x \leq_{\pi} y$, if and only if there exists a sequence $x = x_0, y_0, x_1, y_1, \ldots, x_n, y_n = y \in P$ satisfying the following conditions.

(1) For all
$$i \in \{0, \ldots, n\}$$
, $[x_i] = [y_i]$.

$$(2)$$
 For all $i \in \{0,\ldots,n-1\}, \; y_i \leqslant x_{i+1}$.

The definition of blockwise preorder allows us:

- to provide a characterization of regular epimorphisms;
- to provide intrinsic definitions of partitions of posets.

The case of sets	Partitions of posets	The case of posets	Further Research
Partition of a	poset (2)		

Intrinsic definitions of partitions of posets are given in terms of blocks and order among them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

The case of sets	Partitions of posets	The case of posets	Further Research
Partition of a	a poset (2)		

Intrinsic definitions of partitions of posets are given in terms of blocks and order among them.

うして ふゆう ふほう ふほう ふしつ

Monotone partition

A monotone partition of a poset P is a poset (π, \preceq) where

- (i) π is a partition of the underlying set of P,
- (ii) for each $x, y \in P$, $x \leqslant y$ implies $[x] \preceq [y]$.

The case of sets	Partitions of posets	The case of posets	Further Research
Partition of a	a poset (2)		

Intrinsic definitions of partitions of posets are given in terms of blocks and order among them.

Monotone partition

A monotone partition of a poset P is a poset (π, \preceq) where

- (i) π is a partition of the underlying set of P,
- (ii) for each $x, y \in P$, $x \leqslant y$ implies $[x] \preceq [y]$.

Regular partition

A regular partition of a poset P is a poset (π, \preceq) where

- (i) π is a partition of the underlying set of P,
- (ii) for each $x, y \in P$, $x \lesssim_{\pi} y$ if and only if $[x] \preceq [y]$.

Indiscernibility relation on a poset

The question:

Consider an information system $\mathcal{P} = (P, A)$ having as universe a finite poset $P = (U, \leq)$. Does an indiscernibility relation I_B on P induces a partition π on P?

Indiscernibility relation on a poset

The question:

Consider an information system $\mathcal{P} = (P, A)$ having as universe a finite poset $P = (U, \leq)$. Does an indiscernibility relation I_B on P induces a partition π on P?

The answer:

Not necessarily.

Indiscernibility relation on a poset

The question:

Consider an information system $\mathcal{P} = (P, A)$ having as universe a finite poset $P = (U, \leq)$. Does an indiscernibility relation I_B on P induces a partition π on P?

The answer:

Not necessarily.

Compatibility

Let $P = (U, \leq)$ be a poset, let I_B be an indiscernibility relation on P, and let $\pi = U/I_B$. We say I_B is compatible with P if there exists a monotone partition (π, \preceq) of P.

Compatibility criterion

Compatibility Criterion

Let $P = (U, \leqslant)$ be a poset, let I_B be an indiscernibility relation on P, and let $\pi = U/I_B$. Then, I_B is compatible with P if and only if, for all $x, y \in P$,

 $x \lesssim_{\pi} y$ and $y \lesssim_{\pi} x$ imply $[x]_{\pi} = [y]_{\pi}$.

Compatibility criterion

Compatibility Criterion

Let $P = (U, \leqslant)$ be a poset, let I_B be an indiscernibility relation on P, and let $\pi = U/I_B$. Then, I_B is compatible with P if and only if, for all $x, y \in P$,

$$x \lesssim_{\pi} y$$
 and $y \lesssim_{\pi} x$ imply $[x]_{\pi} = [y]_{\pi}$.

Uniqueness

Let $P = (U, \leq)$ be a poset, let I_B be an indiscernibility relation on P, and let $\pi = U/I_B$. If I_B is compatible with P, then π admits a unique extension to a regular partition of P.

The case of sets	Partitions of posets	The case of posets	Further Research
Example (1)			

Consider the following table, reporting a collection of houses for sale in the city of Merate, Lecco, Italy.

House	Price (€)	Size (m^2)	District	Condition	Rooms
a	200.000	50	Centre	excellent	2
b	170.000	70	Centre	poor	3
С	185.000	53	Centre	very good	2
d	190.000	68	Sartirana	very good	3
е	140.000	60	Sartirana	good	2
f	155.000	65	Novate	good	2
g	250.000	85	Novate	excellent	3
h	240.000	75	Novate	excellent	3

Example (2)

Let $U = \{a, b, c, d, e, f, g, h\}$ be the set of all houses. We choose the subset of attributes $O = \{Price, Size\}$ to define on U a partial order \leq as follow. For each $x, y \in U$,

 $x \leqslant y$ if and only if $\operatorname{Price}(x) \leqslant \operatorname{Price}(y)$, $\operatorname{Size}(x) \leqslant \operatorname{Size}(y)$.

Example (2)

Let $U = \{a, b, c, d, e, f, g, h\}$ be the set of all houses. We choose the subset of attributes $O = \{Price, Size\}$ to define on U a partial order \leq as follow. For each $x, y \in U$,

 $x\leqslant y$ if and only if $\operatorname{Price}(x)\leqslant\operatorname{Price}(y)$, $\operatorname{Size}(x)\leqslant\operatorname{Size}(y)$. We obtain the poset $P=(U,\leqslant)$.

The case of sets	Partitions of posets	The case of posets	Further Research
Example (3)			

We denote by $\mathcal{P}(P, \overline{A})$ the information system having P as universe, and $\overline{A} = \{\text{District}, \text{Condition}, \text{Rooms}\}$ as the set of attributes.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

The case of sets	Partitions of posets	The case of posets	Further Research
Example (3)			

We denote by $\mathcal{P}(P, \overline{A})$ the information system having P as universe, and $\overline{A} = \{\text{District}, \text{Condition}, \text{Rooms}\}$ as the set of attributes.

Let $D = \{\text{District}\}, C = \{\text{Condition}\}, \text{ and } R = \{\text{Rooms}\}, \text{ and denote by } \pi_D, \pi_C, \text{ and } \pi_R \text{ the partitions } U/I_D, U/I_C, \text{ and } U/I_R \text{ respectively. Moreover, let } S = D \cup R, T = C \cup R, \text{ and let } \pi_S = U/I_S, \text{ and } \pi_T = U/I_T. We have:$

うして ふゆう ふほう ふほう ふしつ

$$\begin{aligned} \pi_D &= \{\{a, b, c\}, \{d, e\}, \{f, g, h\}\}; \\ \pi_C &= \{\{a, g, h\}, \{b\}, \{c, d\}, \{e, f\}\}\}; \\ \pi_R &= \{\{a, c, e, f\}, \{b, d, g, h\}\}; \\ \pi_S &= \{\{a, c\}, \{b\}, \{d\}, \{e\}, \{f\}, \{g, h\}\}; \\ \pi_T &= \{\{a\}, \{b\}, \{c\}, \{d\}, \{e, f\}, \{g, h\}\}; \end{aligned}$$

The case of sets	Partitions of posets	The case of posets	Further Research
Example (4)			

The following figure shows the partitions π_D , π_C , and π_R .

(日) (四) (王) (王) (王) (王)

The case of sets	Partitions of posets	The case of posets	Further Research
Example (4)			

The following figure shows the partitions π_D , π_C , and π_R .

Using the compatibility criterion one can check that while π_C and π_R are compatible with P, π_D is not.

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

The case of sets	Partitions of posets	The case of posets	Further Research
Example (5)			

The following figure shows the partitions π_S , and π_T .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The case of sets	Partitions of posets	The case of posets	Further Research
Example (5)			

The following figure shows the partitions π_S , and π_T .

Using the compatibility criterion one can check that π_S and π_T are compatible with P, and thus can be extended to monotone partitions of P.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

The case of sets	Partitions of posets	The case of posets	Further Research
Further rese			

- Investigation of the structure of all possible indiscernibility relations on a partially ordered universe.
- In some sense, when we consider the (unique) regular partition of a poset P induced by an indiscernibility relation compatible with P, we are not adding information to the partial order of P. On the other hand, taking into account monotone partitions which are not regular, amounts to add information which was not previously included in the poset. Can this be regarded as an attempt to add some preferences amongst the elements of the poset?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank you for your attention.