
Introduction Application Querying with �ukasiewicz logic Conclusion

Querying with �ukasiewicz logic

Pietro Codara

Dipartimento di Informatica, Università degli Studi di Milano

(Joint work with S. Aguzzoli, T. Flaminio, B. Gerla, and D. Valota)

FUZZ-IEEE 2015, Istanbul � Aug 4th, 2015



Introduction Application Querying with �ukasiewicz logic Conclusion

Overview

The Idea

Test an intended semantics for �ukasiewicz logic in a real-world

situation.

The Application

An automotive data-set. We query the database via the pure

language of the logic, i.e., via �ukasiewicz formulæ.

The Question

What can we ask to our database?



Introduction Application Querying with �ukasiewicz logic Conclusion

Overview

The Idea

Test an intended semantics for �ukasiewicz logic in a real-world

situation.

The Application

An automotive data-set. We query the database via the pure

language of the logic, i.e., via �ukasiewicz formulæ.

The Question

What can we ask to our database?



Introduction Application Querying with �ukasiewicz logic Conclusion

Overview

The Idea

Test an intended semantics for �ukasiewicz logic in a real-world

situation.

The Application

An automotive data-set. We query the database via the pure

language of the logic, i.e., via �ukasiewicz formulæ.

The Question

What can we ask to our database?



Introduction Application Querying with �ukasiewicz logic Conclusion

�ukasiewicz logic in brief (1)

�ukasiewicz logic can be semantically de�ned as a many-valued

logic, as follows.

Let Form be the set of formulæ over propositional variables

X1,X2, . . . in the language →,¬,⊥.
An assignment is a function µ : Form→ [0, 1] ⊆ R with values

in the real unit interval such that, for any two α, β ∈ Form,
µ(α→ β) = min{1, 1− (µ(α) − µ(β))}

µ(¬α) = 1− µ(α)

µ(⊥) = 0

A tautology is a formula α such that µ(α) = 1 for every

assignment µ.



Introduction Application Querying with �ukasiewicz logic Conclusion

�ukasiewicz logic in brief (1)

�ukasiewicz logic can be semantically de�ned as a many-valued

logic, as follows.

Let Form be the set of formulæ over propositional variables

X1,X2, . . . in the language →,¬,⊥.

An assignment is a function µ : Form→ [0, 1] ⊆ R with values

in the real unit interval such that, for any two α, β ∈ Form,
µ(α→ β) = min{1, 1− (µ(α) − µ(β))}

µ(¬α) = 1− µ(α)

µ(⊥) = 0

A tautology is a formula α such that µ(α) = 1 for every

assignment µ.



Introduction Application Querying with �ukasiewicz logic Conclusion

�ukasiewicz logic in brief (1)

�ukasiewicz logic can be semantically de�ned as a many-valued

logic, as follows.

Let Form be the set of formulæ over propositional variables

X1,X2, . . . in the language →,¬,⊥.
An assignment is a function µ : Form→ [0, 1] ⊆ R with values

in the real unit interval such that, for any two α, β ∈ Form,
µ(α→ β) = min{1, 1− (µ(α) − µ(β))}

µ(¬α) = 1− µ(α)

µ(⊥) = 0

A tautology is a formula α such that µ(α) = 1 for every

assignment µ.



Introduction Application Querying with �ukasiewicz logic Conclusion

�ukasiewicz logic in brief (1)

�ukasiewicz logic can be semantically de�ned as a many-valued

logic, as follows.

Let Form be the set of formulæ over propositional variables

X1,X2, . . . in the language →,¬,⊥.
An assignment is a function µ : Form→ [0, 1] ⊆ R with values

in the real unit interval such that, for any two α, β ∈ Form,
µ(α→ β) = min{1, 1− (µ(α) − µ(β))}

µ(¬α) = 1− µ(α)

µ(⊥) = 0

A tautology is a formula α such that µ(α) = 1 for every

assignment µ.



Introduction Application Querying with �ukasiewicz logic Conclusion

�ukasiewicz logic in brief (2)

Derived connectives >,∨,∧,↔,⊕,�,	 are de�ned in the
following table, for every formula α and β:

Derived connective De�nition

> ¬⊥
α∨ β (α→ β) → β

α∧ β ¬(¬α∨ ¬β)

α↔ β (α→ β)∧ (β→ α)

α⊕ β ¬α→ β

α� β ¬(¬α⊕ ¬β)

α	 β ¬(α→ β)

Table : Derived connectives in �ukasiewicz logic.

For each integer k > 0 and each formula ϕ let 1ϕ = ϕ and

(k + 1)ϕ = ϕ⊕ kϕ. Analogously, let ϕ1 = ϕ and

ϕk+1 = ϕ�ϕk .



Introduction Application Querying with �ukasiewicz logic Conclusion

The logic of vague proposition (1)

Recent results show that �ukasiewicz logic is the logic

suitable for dealing with a certain kind of vagueness �

essentially the logic of "the more", "the less", and "the

much more than".

�ukasiewicz logic can deal with properties which has a

natural opposite. For instance, fast has as its opposite

slow, with their obvious general meanings, while red, the

property of being red, might not have a natural opposite.



Introduction Application Querying with �ukasiewicz logic Conclusion

The logic of vague proposition (1)

Recent results show that �ukasiewicz logic is the logic

suitable for dealing with a certain kind of vagueness �

essentially the logic of "the more", "the less", and "the

much more than".

�ukasiewicz logic can deal with properties which has a

natural opposite. For instance, fast has as its opposite

slow, with their obvious general meanings, while red, the

property of being red, might not have a natural opposite.



Introduction Application Querying with �ukasiewicz logic Conclusion

The logic of vague proposition (2)

Consider the propositions P : "The car is fast", and Q : "The

car is cheap". Then,

1 ¬P means "The car is slow";

2 P ∧Q means "The car is fast and cheap";

3 P ∨Q means "The car is fast or cheap";

4 P � P means "The car is very fast", P � P � P = P3

means "The car is very very fast", . . . ;

5 P ⊕ P means "The car is somewhat fast", . . . ;

6 P 	Q means "The car is much more fast than cheap".



Introduction Application Querying with �ukasiewicz logic Conclusion

The logic of vague proposition (2)

Consider the propositions P : "The car is fast", and Q : "The

car is cheap". Then,

1 ¬P means "The car is slow";

2 P ∧Q means "The car is fast and cheap";

3 P ∨Q means "The car is fast or cheap";

4 P � P means "The car is very fast", P � P � P = P3

means "The car is very very fast", . . . ;

5 P ⊕ P means "The car is somewhat fast", . . . ;

6 P 	Q means "The car is much more fast than cheap".



Introduction Application Querying with �ukasiewicz logic Conclusion

The logic of vague proposition (2)

Consider the propositions P : "The car is fast", and Q : "The

car is cheap". Then,

1 ¬P means "The car is slow";

2 P ∧Q means "The car is fast and cheap";

3 P ∨Q means "The car is fast or cheap";

4 P � P means "The car is very fast", P � P � P = P3

means "The car is very very fast", . . . ;

5 P ⊕ P means "The car is somewhat fast", . . . ;

6 P 	Q means "The car is much more fast than cheap".



Introduction Application Querying with �ukasiewicz logic Conclusion

The logic of vague proposition (2)

Consider the propositions P : "The car is fast", and Q : "The

car is cheap". Then,

1 ¬P means "The car is slow";

2 P ∧Q means "The car is fast and cheap";

3 P ∨Q means "The car is fast or cheap";

4 P � P means "The car is very fast", P � P � P = P3

means "The car is very very fast", . . . ;

5 P ⊕ P means "The car is somewhat fast", . . . ;

6 P 	Q means "The car is much more fast than cheap".



Introduction Application Querying with �ukasiewicz logic Conclusion

The logic of vague proposition (2)

Consider the propositions P : "The car is fast", and Q : "The

car is cheap". Then,

1 ¬P means "The car is slow";

2 P ∧Q means "The car is fast and cheap";

3 P ∨Q means "The car is fast or cheap";

4 P � P means "The car is very fast", P � P � P = P3

means "The car is very very fast", . . . ;

5 P ⊕ P means "The car is somewhat fast", . . . ;

6 P 	Q means "The car is much more fast than cheap".



Introduction Application Querying with �ukasiewicz logic Conclusion

The logic of vague proposition (2)

Consider the propositions P : "The car is fast", and Q : "The

car is cheap". Then,

1 ¬P means "The car is slow";

2 P ∧Q means "The car is fast and cheap";

3 P ∨Q means "The car is fast or cheap";

4 P � P means "The car is very fast", P � P � P = P3

means "The car is very very fast", . . . ;

5 P ⊕ P means "The car is somewhat fast", . . . ;

6 P 	Q means "The car is much more fast than cheap".



Introduction Application Querying with �ukasiewicz logic Conclusion

The logic of vague proposition (2)

Consider the propositions P : "The car is fast", and Q : "The

car is cheap". Then,

1 ¬P means "The car is slow";

2 P ∧Q means "The car is fast and cheap";

3 P ∨Q means "The car is fast or cheap";

4 P � P means "The car is very fast", P � P � P = P3

means "The car is very very fast", . . . ;

5 P ⊕ P means "The car is somewhat fast", . . . ;

6 P 	Q means "The car is much more fast than cheap".



Introduction Application Querying with �ukasiewicz logic Conclusion

The database: data

Our model is a single database table where we have collected
cars data. The table contains 4684 records, representing (a
subset of) the cars on the Italian market in the year 2014.

Field Type Associated Variable

id int(10) unsigned �
manufacturer varchar(50) �
model varchar(50) �
trim varchar(200) �
price int(11) X0
length int(11) X1
width int(11) X2
height int(11) X3
fuel tank int(11) X4
seating capacity tinyint(4) X5
car segment varchar(50) �
drive varchar(50) �
fuel varchar(50) �
cubic capacity - cc int(11) X6
horsepower int(11) X7
power int(11) X8
environmental classi�cation varchar(10) �
co2 emission int(11) X9
gearbox varchar(50) �
max speed smallint(6) X10
acceleration 0/100 decimal(5,2) X11
urban cycle consumption decimal(5,2) X12
extra-urban cycle consumption decimal(5,2) X13
combined cycle consumption decimal(5,2) X14



Introduction Application Querying with �ukasiewicz logic Conclusion

The database: interface

Figure : The web page to submit queries



Introduction Application Querying with �ukasiewicz logic Conclusion

Using linguistic hedges: an example

Our starting point is the expression of our desiderata in

natural language: I want a car with remarkable acceleration,

but with reduced urban fuel consumption.

The more natural way to query our database is thus to ask

X 2
11 ∧ ¬X12

The �rst 10 records of the answer set are:

4272 BMW Serie 3 GT 335d xDrive 2014 [0.793]

4275 BMW Serie 3 GT 335d xDrive 2014 [0.793]

2969 Audi SQ5 (8R) 3.0 TDI DPF quattro 2012 [0.763]

4287 BMW Serie 6 Coupe 640d xDrive 2012 [0.748]

4369 BMW Serie 6 GC 640d xDrive 2013 [0.748]

4433 BMW X4 xDrive 3.5d 2014 [0.748]

4462 BMW Serie 4 Cabrio 435d xDrive 2014 [0.748]

4468 BMW Serie 4 Cabrio 435d xDrive 2014 [0.748]

665 In�niti Q50 S Hybrid 2013 [0.737]

3028 Audi A7 Sportback 3.0 TDI quattro 2012 [0.733]



Introduction Application Querying with �ukasiewicz logic Conclusion

Using linguistic hedges: an example

Our starting point is the expression of our desiderata in

natural language: I want a car with remarkable acceleration,

but with reduced urban fuel consumption.

The more natural way to query our database is thus to ask

X 2
11 ∧ ¬X12

The �rst 10 records of the answer set are:

4272 BMW Serie 3 GT 335d xDrive 2014 [0.793]

4275 BMW Serie 3 GT 335d xDrive 2014 [0.793]

2969 Audi SQ5 (8R) 3.0 TDI DPF quattro 2012 [0.763]

4287 BMW Serie 6 Coupe 640d xDrive 2012 [0.748]

4369 BMW Serie 6 GC 640d xDrive 2013 [0.748]

4433 BMW X4 xDrive 3.5d 2014 [0.748]

4462 BMW Serie 4 Cabrio 435d xDrive 2014 [0.748]

4468 BMW Serie 4 Cabrio 435d xDrive 2014 [0.748]

665 In�niti Q50 S Hybrid 2013 [0.737]

3028 Audi A7 Sportback 3.0 TDI quattro 2012 [0.733]



Introduction Application Querying with �ukasiewicz logic Conclusion

Using linguistic hedges: an example

Our starting point is the expression of our desiderata in

natural language: I want a car with remarkable acceleration,

but with reduced urban fuel consumption.

The more natural way to query our database is thus to ask

X 2
11 ∧ ¬X12

The �rst 10 records of the answer set are:

4272 BMW Serie 3 GT 335d xDrive 2014 [0.793]

4275 BMW Serie 3 GT 335d xDrive 2014 [0.793]

2969 Audi SQ5 (8R) 3.0 TDI DPF quattro 2012 [0.763]

4287 BMW Serie 6 Coupe 640d xDrive 2012 [0.748]

4369 BMW Serie 6 GC 640d xDrive 2013 [0.748]

4433 BMW X4 xDrive 3.5d 2014 [0.748]

4462 BMW Serie 4 Cabrio 435d xDrive 2014 [0.748]

4468 BMW Serie 4 Cabrio 435d xDrive 2014 [0.748]

665 In�niti Q50 S Hybrid 2013 [0.737]

3028 Audi A7 Sportback 3.0 TDI quattro 2012 [0.733]



Introduction Application Querying with �ukasiewicz logic Conclusion

Using linguistic hedges: updating queries

Suppose we do not want to spend so much money for our car,

but we are looking, instead, for something very, very, (very)

cheap.

We add a new clause talking about the cost of the car:

X 2
11 ∧ ¬X12 ∧ ¬X 3

0

The answer set seems to satisfy our request:

4688 Ford Focus ST EcoBoost 250Cv 2012 [0.556]

3003 Audi S1 2.0 TFSI quattro 2014 [0.551]

2745 Volkswagen Golf VII 2.0 TSI GTI 2013 [0.546]

2205 Renault Megane III Coupe 2.0 TCe 265 2014 [0.544]

4781 Ford Focus Wagon ST 2012 [0.541]

3000 Audi S1 Sportback 2.0 TFSI quattro 2014 [0.538]

478 Seat Leon SC TSI Cupra 2014 [0.537]

3292 Opel Astra J GTC Turbo OPC 2012 [0.535]

496 Seat Leon 2.0 TSI Cupra 2014 [0.530]

2736 Volkswagen Golf VII 2.0 TSI GTI 2013 [0.528]

52 Renault Clio IV 1.6 TCe 200 Monaco GP 2014 [0.526]



Introduction Application Querying with �ukasiewicz logic Conclusion

Using linguistic hedges: updating queries

Suppose we do not want to spend so much money for our car,

but we are looking, instead, for something very, very, (very)

cheap.

We add a new clause talking about the cost of the car:

X 2
11 ∧ ¬X12 ∧ ¬X 3

0

The answer set seems to satisfy our request:

4688 Ford Focus ST EcoBoost 250Cv 2012 [0.556]

3003 Audi S1 2.0 TFSI quattro 2014 [0.551]

2745 Volkswagen Golf VII 2.0 TSI GTI 2013 [0.546]

2205 Renault Megane III Coupe 2.0 TCe 265 2014 [0.544]

4781 Ford Focus Wagon ST 2012 [0.541]

3000 Audi S1 Sportback 2.0 TFSI quattro 2014 [0.538]

478 Seat Leon SC TSI Cupra 2014 [0.537]

3292 Opel Astra J GTC Turbo OPC 2012 [0.535]

496 Seat Leon 2.0 TSI Cupra 2014 [0.530]

2736 Volkswagen Golf VII 2.0 TSI GTI 2013 [0.528]

52 Renault Clio IV 1.6 TCe 200 Monaco GP 2014 [0.526]



Introduction Application Querying with �ukasiewicz logic Conclusion

Using linguistic hedges: updating queries

Suppose we do not want to spend so much money for our car,

but we are looking, instead, for something very, very, (very)

cheap.

We add a new clause talking about the cost of the car:

X 2
11 ∧ ¬X12 ∧ ¬X 3

0

The answer set seems to satisfy our request:

4688 Ford Focus ST EcoBoost 250Cv 2012 [0.556]

3003 Audi S1 2.0 TFSI quattro 2014 [0.551]

2745 Volkswagen Golf VII 2.0 TSI GTI 2013 [0.546]

2205 Renault Megane III Coupe 2.0 TCe 265 2014 [0.544]

4781 Ford Focus Wagon ST 2012 [0.541]

3000 Audi S1 Sportback 2.0 TFSI quattro 2014 [0.538]

478 Seat Leon SC TSI Cupra 2014 [0.537]

3292 Opel Astra J GTC Turbo OPC 2012 [0.535]

496 Seat Leon 2.0 TSI Cupra 2014 [0.530]

2736 Volkswagen Golf VII 2.0 TSI GTI 2013 [0.528]

52 Renault Clio IV 1.6 TCe 200 Monaco GP 2014 [0.526]



Introduction Application Querying with �ukasiewicz logic Conclusion

Using linguistic hedges: comments

One of the most interesting features of �ukasiewicz

querying is the capability of using linguistic hedges such as

somewhat or very.

Queries written as formulæ in � are easily updatable.

When we conjunct new conditions, the truth values of the

top records of the answer set is decreasing. We shall

overcome this obstacle by asking for our �nal query to be

somewhat satis�ed. For instance, we can rewrite

X 2
11 ∧ ¬X12 ∧ ¬X 3

0 as 2(X 2
11 ∧ ¬X12 ∧ ¬X 3

0 ).

It is always possible to rewrite a traditional query in the

form X ≤ k or X ≥ k , for k ∈ [0, 1] a rational value, in a

�ukasiewicz query which provide exactly the same result.

Nevertheless, this procedure produces very arti�cial values

for exponents and multipliers. For example, X11 ≥ 0.875,

and X12 ≤ 0.25 becomes 20(X 8
11 ∧ ¬X 4

12).



Introduction Application Querying with �ukasiewicz logic Conclusion

Using linguistic hedges: comments

One of the most interesting features of �ukasiewicz

querying is the capability of using linguistic hedges such as

somewhat or very.

Queries written as formulæ in � are easily updatable.

When we conjunct new conditions, the truth values of the

top records of the answer set is decreasing. We shall

overcome this obstacle by asking for our �nal query to be

somewhat satis�ed. For instance, we can rewrite

X 2
11 ∧ ¬X12 ∧ ¬X 3

0 as 2(X 2
11 ∧ ¬X12 ∧ ¬X 3

0 ).

It is always possible to rewrite a traditional query in the

form X ≤ k or X ≥ k , for k ∈ [0, 1] a rational value, in a

�ukasiewicz query which provide exactly the same result.

Nevertheless, this procedure produces very arti�cial values

for exponents and multipliers. For example, X11 ≥ 0.875,

and X12 ≤ 0.25 becomes 20(X 8
11 ∧ ¬X 4

12).



Introduction Application Querying with �ukasiewicz logic Conclusion

Using linguistic hedges: comments

One of the most interesting features of �ukasiewicz

querying is the capability of using linguistic hedges such as

somewhat or very.

Queries written as formulæ in � are easily updatable.

When we conjunct new conditions, the truth values of the

top records of the answer set is decreasing. We shall

overcome this obstacle by asking for our �nal query to be

somewhat satis�ed. For instance, we can rewrite

X 2
11 ∧ ¬X12 ∧ ¬X 3

0 as 2(X 2
11 ∧ ¬X12 ∧ ¬X 3

0 ).

It is always possible to rewrite a traditional query in the

form X ≤ k or X ≥ k , for k ∈ [0, 1] a rational value, in a

�ukasiewicz query which provide exactly the same result.

Nevertheless, this procedure produces very arti�cial values

for exponents and multipliers. For example, X11 ≥ 0.875,

and X12 ≤ 0.25 becomes 20(X 8
11 ∧ ¬X 4

12).



Introduction Application Querying with �ukasiewicz logic Conclusion

Using linguistic hedges: comments

One of the most interesting features of �ukasiewicz

querying is the capability of using linguistic hedges such as

somewhat or very.

Queries written as formulæ in � are easily updatable.

When we conjunct new conditions, the truth values of the

top records of the answer set is decreasing. We shall

overcome this obstacle by asking for our �nal query to be

somewhat satis�ed. For instance, we can rewrite

X 2
11 ∧ ¬X12 ∧ ¬X 3

0 as 2(X 2
11 ∧ ¬X12 ∧ ¬X 3

0 ).

It is always possible to rewrite a traditional query in the

form X ≤ k or X ≥ k , for k ∈ [0, 1] a rational value, in a

�ukasiewicz query which provide exactly the same result.

Nevertheless, this procedure produces very arti�cial values

for exponents and multipliers. For example, X11 ≥ 0.875,

and X12 ≤ 0.25 becomes 20(X 8
11 ∧ ¬X 4

12).



Introduction Application Querying with �ukasiewicz logic Conclusion

The minus connective 	

Suppose you can describe, via a formula α, what (in your

opinion) makes a car a good car. Further, suppose you can

describe, via a formula β, what makes a car a bad car.

Consider the formula γ = α∧ ¬β. Intuitively, γ describe

your perfect car, with all pros and no cons. Let A be a car

satisfying α in degree 0.5, and β in degree 0.5. Thus, A

satisfy γ in degree 0.5.

Let now ϕ = α− β. In natural language, ϕ asks for a car

which is much more α than β. The truth value of ϕ when

evaluated in A is 0. While according to γ, the car A is a

medium car, ϕ discard the same car.

An assertion like ϕ can be interpreted as a measure of the

level of satisfaction of the buyer: satisfaction begin when

pros overcome cons, and is maximal when we have all

possible pros, and no cons.



Introduction Application Querying with �ukasiewicz logic Conclusion

The minus connective 	

Suppose you can describe, via a formula α, what (in your

opinion) makes a car a good car. Further, suppose you can

describe, via a formula β, what makes a car a bad car.

Consider the formula γ = α∧ ¬β. Intuitively, γ describe

your perfect car, with all pros and no cons. Let A be a car

satisfying α in degree 0.5, and β in degree 0.5. Thus, A

satisfy γ in degree 0.5.

Let now ϕ = α− β. In natural language, ϕ asks for a car

which is much more α than β. The truth value of ϕ when

evaluated in A is 0. While according to γ, the car A is a

medium car, ϕ discard the same car.

An assertion like ϕ can be interpreted as a measure of the

level of satisfaction of the buyer: satisfaction begin when

pros overcome cons, and is maximal when we have all

possible pros, and no cons.



Introduction Application Querying with �ukasiewicz logic Conclusion

The minus connective 	

Suppose you can describe, via a formula α, what (in your

opinion) makes a car a good car. Further, suppose you can

describe, via a formula β, what makes a car a bad car.

Consider the formula γ = α∧ ¬β. Intuitively, γ describe

your perfect car, with all pros and no cons. Let A be a car

satisfying α in degree 0.5, and β in degree 0.5. Thus, A

satisfy γ in degree 0.5.

Let now ϕ = α− β. In natural language, ϕ asks for a car

which is much more α than β. The truth value of ϕ when

evaluated in A is 0. While according to γ, the car A is a

medium car, ϕ discard the same car.

An assertion like ϕ can be interpreted as a measure of the

level of satisfaction of the buyer: satisfaction begin when

pros overcome cons, and is maximal when we have all

possible pros, and no cons.



Introduction Application Querying with �ukasiewicz logic Conclusion

The minus connective 	

Suppose you can describe, via a formula α, what (in your

opinion) makes a car a good car. Further, suppose you can

describe, via a formula β, what makes a car a bad car.

Consider the formula γ = α∧ ¬β. Intuitively, γ describe

your perfect car, with all pros and no cons. Let A be a car

satisfying α in degree 0.5, and β in degree 0.5. Thus, A

satisfy γ in degree 0.5.

Let now ϕ = α− β. In natural language, ϕ asks for a car

which is much more α than β. The truth value of ϕ when

evaluated in A is 0. While according to γ, the car A is a

medium car, ϕ discard the same car.

An assertion like ϕ can be interpreted as a measure of the

level of satisfaction of the buyer: satisfaction begin when

pros overcome cons, and is maximal when we have all

possible pros, and no cons.



Introduction Application Querying with �ukasiewicz logic Conclusion

The minus connective 	: an example

The buyer, asked for a de�nition of a good car: "A good

car has a remarkable acceleration, but a reduced urban

fuel consumption". In symbols: X 2
11 ∧ ¬X12.

The buyer, asked for a de�nition of a bad car: "A bad car

is an expensive car". In symbols: X0.

In the preceding example, we have forced a car to be

cheap, using ∧. We want, instead, to assert that we do not

make any di�erence between a good car with a medium

price, and a medium car with a low price. We are asking

for a car that is much more good than bad.



Introduction Application Querying with �ukasiewicz logic Conclusion

The minus connective 	: an example

The buyer, asked for a de�nition of a good car: "A good

car has a remarkable acceleration, but a reduced urban

fuel consumption". In symbols: X 2
11 ∧ ¬X12.

The buyer, asked for a de�nition of a bad car: "A bad car

is an expensive car". In symbols: X0.

In the preceding example, we have forced a car to be

cheap, using ∧. We want, instead, to assert that we do not

make any di�erence between a good car with a medium

price, and a medium car with a low price. We are asking

for a car that is much more good than bad.



Introduction Application Querying with �ukasiewicz logic Conclusion

The minus connective 	: an example

The buyer, asked for a de�nition of a good car: "A good

car has a remarkable acceleration, but a reduced urban

fuel consumption". In symbols: X 2
11 ∧ ¬X12.

The buyer, asked for a de�nition of a bad car: "A bad car

is an expensive car". In symbols: X0.

In the preceding example, we have forced a car to be

cheap, using ∧. We want, instead, to assert that we do not

make any di�erence between a good car with a medium

price, and a medium car with a low price. We are asking

for a car that is much more good than bad.



Introduction Application Querying with �ukasiewicz logic Conclusion

The minus connective 	: an example, cont.

To make such request, we use the following query.

X 2
11 ∧ ¬X12 	 ¬X 3

0

The answer we obtain querying the database is the following.

3003 Audi S1 2.0 TFSI quattro 2014 [0.510]

3000 Audi S1 Sportback 2.0 TFSI quattro 2014 [0.490]

478 Seat Leon SC 2.0 TSI Cupra 2014 [0.490]

496 Seat Leon 2.0 TSI Cupra 2014 [0.488]

2988 Audi S3 2.0 TFSI quattro 2013 [0.481]

487 Seat Leon SC 2.0 TSI Cupra 2014 [0.480]

4275 BMW Serie 3 GT 335d xDrive 2014 [0.480]

497 Seat Leon 2.0 TSI Cupra 2014 [0.478]

2993 Audi S3 Sportback 2.0 TFSI quattro 2013 [0.476]

1595 BMW Serie 2 Coupe 228i 2014 [0.472]



Introduction Application Querying with �ukasiewicz logic Conclusion

The minus connective 	: an example, cont.

To make such request, we use the following query.

X 2
11 ∧ ¬X12 	 ¬X 3

0

The answer we obtain querying the database is the following.

3003 Audi S1 2.0 TFSI quattro 2014 [0.510]

3000 Audi S1 Sportback 2.0 TFSI quattro 2014 [0.490]

478 Seat Leon SC 2.0 TSI Cupra 2014 [0.490]

496 Seat Leon 2.0 TSI Cupra 2014 [0.488]

2988 Audi S3 2.0 TFSI quattro 2013 [0.481]

487 Seat Leon SC 2.0 TSI Cupra 2014 [0.480]

4275 BMW Serie 3 GT 335d xDrive 2014 [0.480]

497 Seat Leon 2.0 TSI Cupra 2014 [0.478]

2993 Audi S3 Sportback 2.0 TFSI quattro 2013 [0.476]

1595 BMW Serie 2 Coupe 228i 2014 [0.472]



Introduction Application Querying with �ukasiewicz logic Conclusion

Conclusion, and further work

The pure �ukasiewicz logic can be e�ectively, and

e�ciently, used to treat real problems: in our case, to

query an online database of cars.

Much work remains to be done on this front to develop an

online system which is meant for a general user, typically

not enough expert in logic to query with logical formulæ.

To this end, we need to design the mechanisms of

interaction between user and system, and

. . . the system must be equipped with an algorithm able to

translate the user's desiderata in a �ukasiewicz formula.



Introduction Application Querying with �ukasiewicz logic Conclusion

Conclusion, and further work

The pure �ukasiewicz logic can be e�ectively, and

e�ciently, used to treat real problems: in our case, to

query an online database of cars.

Much work remains to be done on this front to develop an

online system which is meant for a general user, typically

not enough expert in logic to query with logical formulæ.

To this end, we need to design the mechanisms of

interaction between user and system, and

. . . the system must be equipped with an algorithm able to

translate the user's desiderata in a �ukasiewicz formula.



Introduction Application Querying with �ukasiewicz logic Conclusion

Conclusion, and further work

The pure �ukasiewicz logic can be e�ectively, and

e�ciently, used to treat real problems: in our case, to

query an online database of cars.

Much work remains to be done on this front to develop an

online system which is meant for a general user, typically

not enough expert in logic to query with logical formulæ.

To this end, we need to design the mechanisms of

interaction between user and system, and

. . . the system must be equipped with an algorithm able to

translate the user's desiderata in a �ukasiewicz formula.



Introduction Application Querying with �ukasiewicz logic Conclusion

Conclusion, and further work

The pure �ukasiewicz logic can be e�ectively, and

e�ciently, used to treat real problems: in our case, to

query an online database of cars.

Much work remains to be done on this front to develop an

online system which is meant for a general user, typically

not enough expert in logic to query with logical formulæ.

To this end, we need to design the mechanisms of

interaction between user and system, and

. . . the system must be equipped with an algorithm able to

translate the user's desiderata in a �ukasiewicz formula.



Introduction Application Querying with �ukasiewicz logic Conclusion

Thank you for your attention.


	Introduction
	Application
	Querying with Łukasiewicz logic
	Conclusion

