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Motivation and Aim

Fuzzy sets featuring in applications to fuzzy control
systems are often required to satisfy specific conditions
such as, e.g., convexity or normality.

In the same connection, a widespread choice is to work
with fuzzy sets whose graphs have triangular shape.

The purpose of this paper is to show that the former
conditions may be regarded as attempts at approximating
the latter choice.

In our main result we prove that a reasonable set of such
conditions suffices to characterise families of triangular
fuzzy sets.
A second result provides an additional characterisation of
such families in terms of properties of the curve that they
parametrise.
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Outline

1 Background

2 Characterisation of pseudo-triangular basis of fuzzy set in
terms of general properties of the fuzzy sets.

3 Characterisation of triangular basis of fuzzy set in terms of
general properties of the fuzzy sets.

4 Characterisation of pseudo-triangular basis of fuzzy set in
terms of properties of the curve that they parametrise.
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Ruspini partitions

By a fuzzy set we mean a function f : [0,1]→ [0,1]. Throughout
this presentation, we fix a finite nonempty family of fuzzy sets
P = {f1, . . . , fn} .

Definition
P is a Ruspini partition if for all x ∈ [0,1]

n∑
i=1

fi(x) = 1 .



Introduction Background Characterisation of Triangular Bases Conclusion

Ruspini partitions

By a fuzzy set we mean a function f : [0,1]→ [0,1]. Throughout
this presentation, we fix a finite nonempty family of fuzzy sets
P = {f1, . . . , fn} .

Definition
P is a Ruspini partition if for all x ∈ [0,1]

n∑
i=1

fi(x) = 1 .



Introduction Background Characterisation of Triangular Bases Conclusion

Overlapping

Definition
We say P is 2-overlapping if for all x ∈ [0,1] and all triples of
indices i1 6= i2 6= i3 one has

min {fi1(x), fi2(x), fi3(x)} = 0 .

Figure: A 2-overlapping Ruspini partition {f1, f2, f3}.
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Normality

The Ruspini and the 2-overlapping conditions apply to a family
of fuzzy sets. Other properties that we consider apply to a
single fuzzy set.

Definition
A fuzzy set f : [0,1]→ [0,1] is normal if there exist x ∈ [0,1]
such that f (x) = 1.

If, moreover, f (y) 6= 1 for all y ∈ [0,1] with y 6= x , we say that f
is strongly normal.
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Convexity

Classically, f : [0,1]→ [0,1] is convex if for all x , y , λ ∈ [0,1],
with x 6= y ,

f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y). (1)

Definition
The function f is min-convex if for all x , y , λ ∈ [0,1],

f (λx + (1− λ)y) ≥ min(f (x), f (y)),

and it is strictly min-convex if for λ ∈ (0,1)

f (λx + (1− λ)y) > min(f (x), f (y)).
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min-convexity, an example

Figure: A min-convex function which is not convex.
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Local Convexity

Let us call Sf = {x ∈ [0,1] | f (x) > 0} the support of f .

Definition
We say f is convex on its support if

f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y).

holds for each x , y ∈ [0,1] such that [x , y ] ⊆ Sf .

We define the notions of (strict) min-convexity of f on its
support in the same manner, mutatis mutandis.
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Triangular basis of fuzzy sets

Definition
A finite family P = {f1, . . . , fn} of continuous fuzzy sets is a
pseudo-triangular basis if there exist
0 = t1 < t2 < · · · < tn−1 < tn = 1 such that (up to a permutation
of the indices) for each i = 1, . . . ,n − 1

a) fi(ti) = 1, fi(ti+1) = 0,
b) fj(x) = 0, for x ∈ [ti , ti+1], j 6= i , i + 1,
c) fi+1(x) = 1− fi(x), for x ∈ [ti , ti+1], and
d) fi , fi+1 are bijective when restricted to [ti , ti+1].

Further, P is a triangular basis if the following condition holds in
place of d).
d∗) fi , fi+1 are linear over [ti , ti+1].
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Triangular basis of fuzzy sets, examples

Figure: A pseudo-triangular basis of fuzzy sets.

Figure: A triangular basis of fuzzy sets.
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Pseudo-triangular basis and general properties of fuzzy sets

Lemma
The following are equivalent.

i) P is a 2-overlapping Ruspini partition and each fi is
strongly normal, min-convex, and strictly min-convex on its
support.

ii) P is a pseudo-triangular basis.
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Proof of the Lemma

Strong normality + Ruspini
a) fi (ti ) = 1, fi (ti+1) = 0, for 0 ≤ t1 < t2 < · · · < tn−1 < tn ≤ 1

· · · + 2-overlapping + min-convexity
— t1 = 0, tn = 1
b) fj (x) = 0, for x ∈ [ti , ti+1], j 6= i , i + 1,
c) fi+1(x) = 1− fi (x), for x ∈ [ti , ti+1], and

· · · + strict min-convexity on the supports (+ continuity)
d) fi , fi+1 are bijective when restricted to [ti , ti+1]
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Triangular basis and general properties of fuzzy sets

Theorem
The following are equivalent.

i) P is a 2-overlapping Ruspini partition, and each fi is
strongly normal, min-convex, and convex on its support.

ii) P is a triangular basis.



Introduction Background Characterisation of Triangular Bases Conclusion

Proof of the Theorem
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Hamiltonian path

The fundamental simplex in Rn, denoted by ∆n, is the convex
hull of the standard basis of Rn; the latter is denoted
{e1, . . . ,en}. In symbols, ∆n = Conv {e1, . . . ,en}.

A face of
dimension k of ∆n is a subset Conv {ei1 , . . . ,eik+1} ⊆ ∆n, for
1 ≤ i1 < i2 < · · · < ik+1 ≤ n. A vertex is a 0-dimensional face.
The 1-skeleton of ∆n, written ∆

(1)
n , is the collection of all faces

of ∆n having dimension not greater than 1.

We say Θ is a Hamiltonian path if there is a permutation
π : n→ n such that

Θ =
n−1⋃
i=1

Conv {eπ(i),eπ(i+1)}
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Pseudo-triangular basis and curve that the fuzzy sets parametrise

We define a continuous map T : [0,1]→ [0,1]n associated with
P by

t 7→ (f1(t), . . . , fn(t)) .

We write Θ = T ([0,1]) for the range of T .

Corollary
The following are equivalent.

i) P is a 2-overlapping Ruspini partition, and each fi is
strongly normal, min-convex, and strictly min-convex on its
support.

ii) The map T : [0,1]→ [0,1]n is injective, and Θ is a
Hamiltonian path on ∆

(1)
n .
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Range parametrised by a triangular basis, examples

Figure: Range parametrised by a (pseudo-)triangular basis with 3 functions.

Figure: Range parametrised by a (pseudo-)triangular basis with 4 functions.
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Range parametrised by a non-Ruspini family, example

Figure: A non-Ruspini family {f1, f2, f3}.

Figure: Range parametrised by a non-Ruspini family {f1, f2, f3}.
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Proof of the Corollary

Ruspini
- Θ ⊆ ∆n

· · · + 2-overlapping
- Θ ⊆ ∆

(1)
n

· · · + strong normality
- e1, . . . ,en ∈ Θ

· · · + continuity
-

⋃n−1
i=1 Conv {eπ(i),eπ(i+1)} ⊆ Θ

· · · + min-convexity
-

⋃n−1
i=1 Conv {eπ(i),eπ(i+1)} = Θ

· · · + strict min-convexity on the supports
- T is injective
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Conclusion and further work

In this paper, we focused on fuzzy sets whose domain is
the real unit interval [0,1].

Sometimes it may be necessary to deal with functions
defined over the real unit n-cube [0,1]n.

A natural question is whether our Theorem admits a
generalisation to higher dimensions (triangular bases over
[0,1]n).
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Thanks

Thank you for your attention.
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