Background

Characterisation of Triangular Bases

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A Characterisation of Bases of Triangular Fuzzy Sets

Pietro Codara Ottavio M. D'Antona Vincenzo Marra

Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano

Presenting author: Pietro Codara

Fuzz-ieee 2009

Introduction • 0	Background	Characterisation of Triangular Bases	Conclusion
Motivation	and Aim		

• Fuzzy sets featuring in applications to fuzzy control systems are often required to satisfy specific conditions such as, e.g., convexity or normality.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction	0	Characterisation of Triangular E
•0	0000000	00000000

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Fuzzy sets featuring in applications to fuzzy control systems are often required to satisfy specific conditions such as, e.g., convexity or normality.
- In the same connection, a widespread choice is to work with fuzzy sets whose graphs have triangular shape.

Introduction	
•0	

Background

Characterisation of Triangular Bases

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Fuzzy sets featuring in applications to fuzzy control systems are often required to satisfy specific conditions such as, e.g., convexity or normality.
- In the same connection, a widespread choice is to work with fuzzy sets whose graphs have triangular shape.
- The purpose of this paper is to show that the former conditions may be regarded as attempts at approximating the latter choice.

Introduction	
•0	

Background

Characterisation of Triangular Bases

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Fuzzy sets featuring in applications to fuzzy control systems are often required to satisfy specific conditions such as, e.g., convexity or normality.
- In the same connection, a widespread choice is to work with fuzzy sets whose graphs have triangular shape.
- The purpose of this paper is to show that the former conditions may be regarded as attempts at approximating the latter choice.
- In our main result we prove that a reasonable set of such conditions suffices to characterise families of triangular fuzzy sets.

Introduction	
•0	

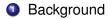
Background

Characterisation of Triangular Bases

Conclusion

- Fuzzy sets featuring in applications to fuzzy control systems are often required to satisfy specific conditions such as, e.g., convexity or normality.
- In the same connection, a widespread choice is to work with fuzzy sets whose graphs have triangular shape.
- The purpose of this paper is to show that the former conditions may be regarded as attempts at approximating the latter choice.
- In our main result we prove that a reasonable set of such conditions suffices to characterise families of triangular fuzzy sets.
- A second result provides an additional characterisation of such families in terms of properties of the curve that they parametrise.

Introduction ⊙●	Background	Characterisation of Triangular Bases	Conclusion
Outline			



Introduction o ●
Outline

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Background

Characterisation of pseudo-triangular basis of fuzzy set in terms of general properties of the fuzzy sets.

Introduction
00

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Background

- Characterisation of pseudo-triangular basis of fuzzy set in terms of general properties of the fuzzy sets.
- Characterisation of triangular basis of fuzzy set in terms of general properties of the fuzzy sets.

Introduction
0•

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Outline

Background

- Characterisation of pseudo-triangular basis of fuzzy set in terms of general properties of the fuzzy sets.
- Characterisation of triangular basis of fuzzy set in terms of general properties of the fuzzy sets.
- Characterisation of pseudo-triangular basis of fuzzy set in terms of properties of the curve that they parametrise.



By a *fuzzy set* we mean a function $f: [0, 1] \rightarrow [0, 1]$. Throughout this presentation, we fix a finite nonempty family of fuzzy sets $P = \{f_1, \ldots, f_n\}$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

By a *fuzzy set* we mean a function $f: [0, 1] \rightarrow [0, 1]$. Throughout this presentation, we fix a finite nonempty family of fuzzy sets $P = \{f_1, \ldots, f_n\}$.

Definition

P is a *Ruspini partition* if for all $x \in [0, 1]$

$$\sum_{i=1}^n f_i(x) = 1.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	Background o●oooooo	Characterisation of Triangular Bases	Conclusion
Overlapping			

Definition

We say *P* is 2-*overlapping* if for all $x \in [0, 1]$ and all triples of indices $i_1 \neq i_2 \neq i_3$ one has

 $\min \{f_{i_1}(x), f_{i_2}(x), f_{i_3}(x)\} = 0.$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Introduction	Background o●oooooo	Characterisation of Triangular Bases	Conclusion
Overlapping			

Definition

We say *P* is 2-*overlapping* if for all $x \in [0, 1]$ and all triples of indices $i_1 \neq i_2 \neq i_3$ one has

 $\min \{f_{i_1}(x), f_{i_2}(x), f_{i_3}(x)\} = 0.$

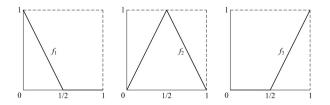


Figure: A 2-overlapping Ruspini partition $\{f_1, f_2, f_3\}$.

・ロト・(四ト・(日下・(日下・))への)

Introduction oo	Background oo●ooooo	Characterisation of Triangular Bases	Conclusion
Normality			

The Ruspini and the 2-overlapping conditions apply to a family of fuzzy sets. Other properties that we consider apply to a single fuzzy set.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction oo	Background oo●ooooo	Characterisation of Triangular Bases	Conclusion
Normality			

The Ruspini and the 2-overlapping conditions apply to a family of fuzzy sets. Other properties that we consider apply to a single fuzzy set.

Definition

A fuzzy set $f: [0, 1] \rightarrow [0, 1]$ is *normal* if there exist $x \in [0, 1]$ such that f(x) = 1.

If, moreover, $f(y) \neq 1$ for all $y \in [0, 1]$ with $y \neq x$, we say that f is *strongly normal*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	Background	Characterisation of Triangular Bases	Conclusion
00	ooo●oooo		00
Convexity			

Classically, $f : [0, 1] \rightarrow [0, 1]$ is *convex* if for all $x, y, \lambda \in [0, 1]$, with $x \neq y$,

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y).$$
(1)

Introduction	Background ooo●oooo	Characterisation of Triangular Bases	Conclusion 00
Convexity			

Classically, $f : [0, 1] \rightarrow [0, 1]$ is *convex* if for all $x, y, \lambda \in [0, 1]$, with $x \neq y$,

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y).$$
(1)

Definition

The function *f* is *min-convex* if for all $x, y, \lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \ge \min(f(x), f(y)),$$

and it is *strictly min-convex* if for $\lambda \in (0, 1)$

$$f(\lambda x + (1 - \lambda)y) > \min(f(x), f(y)).$$

Background 0000000

Characterisation of Triangular Bases

Conclusion

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

min-convexity, an example

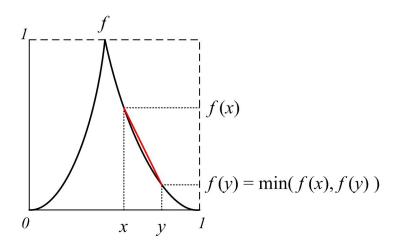


Figure: A min-convex function which is not convex.

Introduction	Background	Characterisation of Triangular Bases	Conclusion
00	oooooo●oo		00
Local Convexit	у		

Let us call $S_f = \{x \in [0, 1] \mid f(x) > 0\}$ the *support* of *f*.

Introduction 00	Background	Characterisation of Triangular Bases	Conclusion 00
Local Conv	vexitv		

Let us call $S_f = \{x \in [0, 1] \mid f(x) > 0\}$ the *support* of *f*.

Definition

We say f is convex on its support if

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

holds for each $x, y \in [0, 1]$ such that $[x, y] \subseteq S_f$.

Introduction	Background ooooo●oo	Characterisation of Triangular Bases	Conclusion
Local Conve	xitv		

Let us call $S_f = \{x \in [0, 1] \mid f(x) > 0\}$ the *support* of *f*.

Definition

We say f is convex on its support if

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y).$$

(日) (日) (日) (日) (日) (日) (日)

holds for each $x, y \in [0, 1]$ such that $[x, y] \subseteq S_f$.

We define the notions of (*strict*) *min-convexity of f on its support* in the same manner, *mutatis mutandis*.

Background

Characterisation of Triangular Bases

Conclusion

Triangular basis of fuzzy sets

Definition

A finite family $P = \{f_1, \ldots, f_n\}$ of continuous fuzzy sets is a *pseudo-triangular basis* if there exist $0 = t_1 < t_2 < \cdots < t_{n-1} < t_n = 1$ such that (up to a permutation of the indices) for each $i = 1, \ldots, n-1$

a)
$$f_i(t_i) = 1, f_i(t_{i+1}) = 0,$$

b)
$$f_j(x) = 0$$
, for $x \in [t_i, t_{i+1}], j \neq i, i+1$,

c)
$$f_{i+1}(x) = 1 - f_i(x)$$
, for $x \in [t_i, t_{i+1}]$, and

d) f_i, f_{i+1} are bijective when restricted to $[t_i, t_{i+1}]$.

Further, P is a *triangular basis* if the following condition holds in place of d).

 d^*) f_i, f_{i+1} are linear over $[t_i, t_{i+1}]$.

Characterisation of Triangular Bases

Conclusion

Triangular basis of fuzzy sets, examples

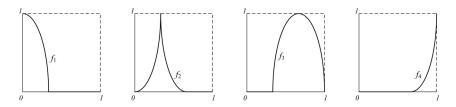


Figure: A pseudo-triangular basis of fuzzy sets.

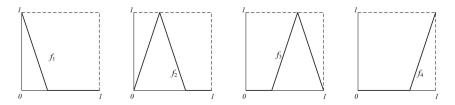


Figure: A triangular basis of fuzzy sets.

Characterisation of Triangular Bases

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Pseudo-triangular basis and general properties of fuzzy sets

Lemma

The following are equivalent.

- *P* is a 2-overlapping Ruspini partition and each f_i is strongly normal, min-convex, and strictly min-convex on its support.
- ii) P is a pseudo-triangular basis.

Proof of the Lemma

Background

Characterisation of Triangular Bases

Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Strong normality + Ruspini

a) $f_i(t_i) = 1$, $f_i(t_{i+1}) = 0$, for $0 \le t_1 < t_2 < \cdots < t_{n-1} < t_n \le 1$

Background

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Proof of the Lemma

Strong normality + Ruspini
 a) f_i(t_i) = 1, f_i(t_{i+1}) = 0, for 0 ≤ t₁ < t₂ < ··· < t_{n-1} < t_n ≤ 1

• · · · + 2-overlapping + min-convexity
-
$$t_1 = 0, t_n = 1$$

b) $f_j(x) = 0$, for $x \in [t_i, t_{i+1}], j \neq i, i + 1$,
c) $f_{i+1}(x) = 1 - f_i(x)$, for $x \in [t_i, t_{i+1}]$, and

Background

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Proof of the Lemma

• Strong normality + Ruspini a) $f_i(t_i) = 1$, $f_i(t_{i+1}) = 0$, for $0 \le t_1 < t_2 < \cdots < t_{n-1} < t_n \le 1$

• · · · + 2-overlapping + min-convexity
-
$$t_1 = 0, t_n = 1$$

b) $f_j(x) = 0$, for $x \in [t_i, t_{i+1}], j \neq i, i + 1$,
c) $f_{i+1}(x) = 1 - f_i(x)$, for $x \in [t_i, t_{i+1}]$, and

• • • + strict min-convexity on the supports (+ continuity)
 d) *f_i*, *f_{i+1}* are bijective when restricted to [*t_i*, *t_{i+1}*]

Background

Characterisation of Triangular Bases

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Triangular basis and general properties of fuzzy sets

Theorem

The following are equivalent.

- *P* is a 2-overlapping Ruspini partition, and each f_i is strongly normal, min-convex, and convex on its support.
- *ii*) *P* is a triangular basis.

Proof of the Theorem

Background

Characterisation of Triangular Bases

Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Strong normality + Ruspini

a) $f_i(t_i) = 1$, $f_i(t_{i+1}) = 0$, for $0 \le t_1 < t_2 < \cdots < t_{n-1} < t_n \le 1$

Background

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Proof of the Theorem

• Strong normality + Ruspini a) $f_i(t_i) = 1$, $f_i(t_{i+1}) = 0$, for $0 \le t_1 < t_2 < \cdots < t_{n-1} < t_n \le 1$

• · · · + 2-overlapping + min-convexity
-
$$t_1 = 0, t_n = 1$$

b) $f_j(x) = 0$, for $x \in [t_i, t_{i+1}], j \neq i, i + 1$,
c) $f_{i+1}(x) = 1 - f_i(x)$, for $x \in [t_i, t_{i+1}]$, and

Background

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Proof of the Theorem

Strong normality + Ruspini
 a) *f_i(t_i)* = 1, *f_i(t_{i+1})* = 0, for 0 ≤ *t*₁ < *t*₂ < ··· < *t_{n-1}* < *t_n* ≤ 1
 ··· + 2-overlapping + min-convexity

-
$$t_1 = 0, t_n = 1$$

b) $f_j(x) = 0$, for $x \in [t_i, t_{i+1}], j \neq i, i + 1$,
c) $f_{i+1}(x) = 1 - f_i(x)$, for $x \in [t_i, t_{i+1}]$, and

... + convexity on the supports (+ continuity)
 *d**) *f_i*, *f_{i+1}* are linear over [*t_i*, *t_{i+1}*]

Introduction 00	Background	Characterisation of Triangular Bases	Conclusion
Hamiltonian	path		

The *fundamental simplex* in \mathbb{R}^n , denoted by Δ_n , is the convex hull of the standard basis of \mathbb{R}^n ; the latter is denoted $\{e_1, \ldots, e_n\}$. In symbols, $\Delta_n = \text{Conv} \{e_1, \ldots, e_n\}$.

Introduction 00	Background	Characterisation of Triangular Bases	Conclusion
Hamiltoniar	path		

The *fundamental simplex* in \mathbb{R}^n , denoted by Δ_n , is the convex hull of the standard basis of \mathbb{R}^n ; the latter is denoted $\{e_1, \ldots, e_n\}$. In symbols, $\Delta_n = \text{Conv} \{e_1, \ldots, e_n\}$. A *face* of dimension *k* of Δ_n is a subset $\text{Conv} \{e_{i_1}, \ldots, e_{i_{k+1}}\} \subseteq \Delta_n$, for $1 \leq i_1 < i_2 < \cdots < i_{k+1} \leq n$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	Background	Characterisation of Triangular Bases	Conclusion
Hamiltoniar	n path		

The *fundamental simplex* in \mathbb{R}^n , denoted by Δ_n , is the convex hull of the standard basis of \mathbb{R}^n ; the latter is denoted $\{e_1, \ldots, e_n\}$. In symbols, $\Delta_n = \text{Conv} \{e_1, \ldots, e_n\}$. A *face* of dimension *k* of Δ_n is a subset $\text{Conv} \{e_{i_1}, \ldots, e_{i_{k+1}}\} \subseteq \Delta_n$, for $1 \le i_1 < i_2 < \cdots < i_{k+1} \le n$. A *vertex* is a 0-dimensional face. The 1-*skeleton* of Δ_n , written $\Delta_n^{(1)}$, is the collection of all faces of Δ_n having dimension not greater than 1.

(日) (日) (日) (日) (日) (日) (日)

Introduction 00	Background	Characterisation of Triangular Bases	Conclusion oo
Hamiltonian	path		

The *fundamental simplex* in \mathbb{R}^n , denoted by Δ_n , is the convex hull of the standard basis of \mathbb{R}^n ; the latter is denoted $\{e_1, \ldots, e_n\}$. In symbols, $\Delta_n = \text{Conv} \{e_1, \ldots, e_n\}$. A *face* of dimension *k* of Δ_n is a subset $\text{Conv} \{e_{i_1}, \ldots, e_{i_{k+1}}\} \subseteq \Delta_n$, for $1 \le i_1 < i_2 < \cdots < i_{k+1} \le n$. A *vertex* is a 0-dimensional face. The 1-*skeleton* of Δ_n , written $\Delta_n^{(1)}$, is the collection of all faces of Δ_n having dimension not greater than 1.

We say Θ is a *Hamiltonian path* if there is a permutation $\pi : \underline{n} \rightarrow \underline{n}$ such that

$$\Theta = \bigcup_{i=1}^{n-1} \operatorname{Conv} \left\{ \boldsymbol{e}_{\pi(i)}, \boldsymbol{e}_{\pi(i+1)} \right\}$$

(日) (日) (日) (日) (日) (日) (日)

Pseudo-triangular basis and curve that the fuzzy sets parametrise

We define a continuous map $T : [0, 1] \rightarrow [0, 1]^n$ associated with P by

$$t\mapsto (f_1(t),\ldots,f_n(t)).$$

We write $\Theta = T([0, 1])$ for the range of T.

Corollary

The following are equivalent.

- *P* is a 2-overlapping Ruspini partition, and each f_i is strongly normal, min-convex, and strictly min-convex on its support.
- *ii*) The map $T : [0,1] \rightarrow [0,1]^n$ is injective, and Θ is a Hamiltonian path on $\Delta_n^{(1)}$.

Background

Characterisation of Triangular Bases

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Range parametrised by a triangular basis, examples

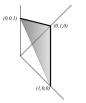


Figure: Range parametrised by a (pseudo-)triangular basis with 3 functions.

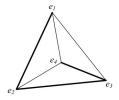


Figure: Range parametrised by a (pseudo-)triangular basis with 4 functions.

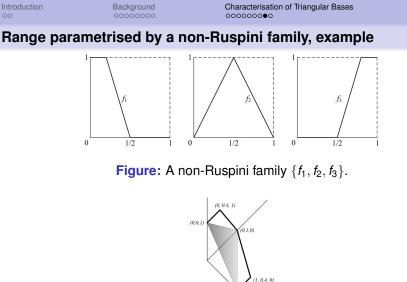


Figure: Range parametrised by a non-Ruspini family $\{f_1, f_2, f_3\}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(1,0,0)

Background

Characterisation of Triangular Bases

Conclusion

- Ruspini
 - $\Theta \subseteq \Delta_n$

Background

Characterisation of Triangular Bases

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- Ruspini
 - $\Theta \subseteq \Delta_n$
- · · · + 2-overlapping - $\Theta \subseteq \Delta_n^{(1)}$

Background

Characterisation of Triangular Bases

Conclusion

Proof of the Corollary

- Ruspini
 - $\Theta \subseteq \Delta_n$
- \cdots + 2-overlapping - $\Theta \subseteq \Delta_n^{(1)}$
- · · · + strong normality

- $e_1, \ldots, e_n \in \Theta$

Background

Characterisation of Triangular Bases

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Ruspini
 - $\Theta \subseteq \Delta_n$
- ··· + 2-overlapping - $\Theta \subseteq \Delta_n^{(1)}$
- · · · + strong normality
 - $e_1, \ldots, e_n \in \Theta$
- · · · + continuity
 - $\bigcup_{i=1}^{n-1} \operatorname{Conv} \{ \boldsymbol{e}_{\pi(i)}, \boldsymbol{e}_{\pi(i+1)} \} \subseteq \Theta$

Background

Characterisation of Triangular Bases

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Ruspini
 - $\Theta \subseteq \Delta_n$
- ··· + 2-overlapping - $\Theta \subseteq \Delta_n^{(1)}$
- · · · + strong normality
 - $e_1, \ldots, e_n \in \Theta$
- · · · + continuity
 - $\bigcup_{i=1}^{n-1} \operatorname{Conv} \{ \boldsymbol{e}_{\pi(i)}, \boldsymbol{e}_{\pi(i+1)} \} \subseteq \Theta$
- · · · + min-convexity
 - $\bigcup_{i=1}^{n-1} \text{Conv} \{ e_{\pi(i)}, e_{\pi(i+1)} \} = \Theta$

Background

Characterisation of Triangular Bases

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Ruspini
 - $\Theta \subseteq \Delta_n$
- ··· + 2-overlapping - $\Theta \subseteq \Delta_n^{(1)}$
- · · · + strong normality
 - $e_1, \ldots, e_n \in \Theta$
- · · · + continuity
 - $\bigcup_{i=1}^{n-1} \operatorname{Conv} \{ \boldsymbol{e}_{\pi(i)}, \boldsymbol{e}_{\pi(i+1)} \} \subseteq \Theta$
- · · · + min-convexity
 - $\bigcup_{i=1}^{n-1} \text{Conv} \{ e_{\pi(i)}, e_{\pi(i+1)} \} = \Theta$
- ··· + strict min-convexity on the supports
 - T is injective

Background

Characterisation of Triangular Bases

Conclusion •0

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion and further work

 In this paper, we focused on fuzzy sets whose domain is the real unit interval [0, 1].

Background

Characterisation of Triangular Bases

Conclusion •0

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion and further work

- In this paper, we focused on fuzzy sets whose domain is the real unit interval [0, 1].
- Sometimes it may be necessary to deal with functions defined over the real unit *n*-cube [0, 1]ⁿ.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusion and further work

- In this paper, we focused on fuzzy sets whose domain is the real unit interval [0, 1].
- Sometimes it may be necessary to deal with functions defined over the real unit *n*-cube [0, 1]ⁿ.
- A natural question is whether our Theorem admits a generalisation to higher dimensions (triangular bases over [0, 1]ⁿ).

Introduction
Thanks

Background

Characterisation of Triangular Bases

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

• Thank you for your attention.