Motivation and Aim	Forest of Assignments	Main Result	Conclusion
000000	000000	000000	000

Best Approximation of Ruspini Partitions in Gödel Logic

Pietro Codara¹ Ottavio M. D'Antona² Vincenzo Marra²

¹ Dipartimento di Matematica F. Enriques, Università degli Studi di Milano

² Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano

Presenting author: Pietro Codara

ECSQARU'2007

Motivation and Aim • 00000	Forest of Assignments	Main Result	Conclusion 000
Ruspini Partitions			

• By a *fuzzy* set we mean a function $f: [0, 1] \rightarrow [0, 1]$.

Motivation and Aim ●০০০০০	Forest of Assignments	Main Result	Conclusion 000
Ruspini Partitions			

- By a *fuzzy set* we mean a function $f: [0, 1] \rightarrow [0, 1]$.
- Throughout this presentation, we fix a finite nonempty family of fuzzy sets $P = \{f_1, \ldots, f_n\}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Motivation and Aim ●০০০০০	Forest of Assignments	Main Result	Conclusion 000
Ruspini Partitions			

- By a *fuzzy set* we mean a function $f: [0, 1] \rightarrow [0, 1]$.
- Throughout this presentation, we fix a finite nonempty family of fuzzy sets $P = \{f_1, \ldots, f_n\}$.
- In our paper we deal with particular families of fuzzy sets: Ruspini partitions.

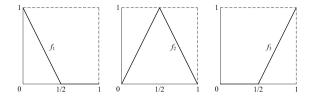
Definition

P is a *Ruspini partition* if for all $x \in [0, 1]$

$$\sum_{i=1}^n f_i(x) = 1.$$

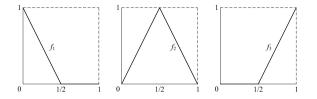
(日) (日) (日) (日) (日) (日) (日) (日)

Motivation and Aim o●oooo	Forest of Assignments	Main Result	Conclusion 000
Motivation and Aim			



・ロット (雪) (日) (日) (日)

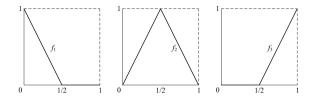
Motivation and Aim o●oooo	Forest of Assignments	Main Result	Conclusion 000
Motivation and Aim			



・ロット (雪) (日) (日) (日)

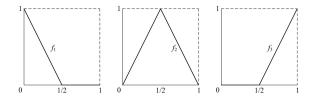
• $X_1 =$ "The temperature is low".

Motivation and Aim ⊙●○○○○○	Forest of Assignments	Main Result	Conclusion 000
Motivation and Aim			



- $X_1 =$ "The temperature is low".
- $X_2 =$ "The temperature is medium".

Motivation and Aim ⊙●○○○○○	Forest of Assignments	Main Result	Conclusion 000
Motivation and Aim			



- $X_1 =$ "The temperature is low".
- $X_2 =$ "The temperature is medium".
- $X_3 =$ "The temperature is high".

Motivation and Aim oo●ooo	Forest of Assignments	Main Result	Conclusion 000
Motivation and Aim			

Had one no information at all about such propositions, one would be led to identify them with propositional variables X_i, subject only to the axioms of L.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Motivation and Aim oo●ooo	Forest of Assignments	Main Result	Conclusion 000
Motivation and Aim			

- Had one no information at all about such propositions, one would be led to identify them with propositional variables X_i, subject only to the axioms of L.
- However, the set P = {f₁, f₂, f₃} does encode information about X₁, X₂, X₃.

(日) (日) (日) (日) (日) (日) (日) (日)

Motivation and Aim oo●ooo	Forest of Assignments	Main Result	Conclusion 000
Motivation and Aim			

- Had one no information at all about such propositions, one would be led to identify them with propositional variables X_i, subject only to the axioms of L.
- However, the set P = {f₁, f₂, f₃} does encode information about X₁, X₂, X₃.
- The set *P* leads one to add extra-logical axioms to ℒ, e.g. ¬(X₁ ∧ X₃), in an attempt to express the fact that one cannot observe both a high and a low temperature at the same time. More generally, *P* implicitly encodes a *theory* over the pure logic ℒ.

(日) (日) (日) (日) (日) (日) (日) (日)

Motivation and Aim ○○●○○○	Forest of Assignments	Main Result	Conclusion 000
Motivation and Aim			

- Had one no information at all about such propositions, one would be led to identify them with propositional variables X_i, subject only to the axioms of L.
- However, the set P = {f₁, f₂, f₃} does encode information about X₁, X₂, X₃.
- The set *P* leads one to add extra-logical axioms to *L*, *e.g.* ¬(*X*₁ ∧ *X*₃), in an attempt to express the fact that one cannot observe both a high and a low temperature at the same time. More generally, *P* implicitly encodes a *theory* over the pure logic *L*.
- Our work provides an analysis of how the Ruspini condition on *P* is reflected by the resulting theory over *L*.

Motivation and Aim ○○●○○○	Forest of Assignments	Main Result	Conclusion 000
Motivation and Aim			

- Had one no information at all about such propositions, one would be led to identify them with propositional variables X_i, subject only to the axioms of L.
- However, the set P = {f₁, f₂, f₃} does encode information about X₁, X₂, X₃.
- The set *P* leads one to add extra-logical axioms to *L*, *e.g.* ¬(*X*₁ ∧ *X*₃), in an attempt to express the fact that one cannot observe both a high and a low temperature at the same time. More generally, *P* implicitly encodes a *theory* over the pure logic *L*.
- Our work provides an analysis of how the Ruspini condition on *P* is reflected by the resulting theory over *L*.
- We take \mathscr{L} to be Gödel logic.

Motivation and Aim ০০০●০০	Forest of Assignments	Main Result	Conclusion 000
Gödel Logic			

 Let us consider well-formed formulas over propositional variables X₁, X₂,... in the language ∧, ∨, →, ¬, ⊥, ⊤.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Motivation and Aim	Forest of Assignments	Main Result	Conclusion
Gödel Logic			

- Let us consider well-formed formulas over propositional variables X₁, X₂,... in the language ∧, ∨, →, ¬, ⊥, ⊤.
- By an *assignment* in Gödel logic we shall mean a function μ from (well-formed) formulas to [0, 1] such that, for any two such formulas α , β ,

$$\begin{split} \mu(\alpha \land \beta) &= \min\{\mu(\alpha), \mu(\beta)\}\\ \mu(\alpha \lor \beta) &= \max\{\mu(\alpha), \mu(\beta)\}\\ \mu(\alpha \to \beta) &= \begin{cases} 1 & \text{if } \mu(\alpha) \le \mu(\beta)\\ \mu(\beta) & \text{otherwise} \end{cases}\\ \text{and } \mu(\neg \alpha) &= \mu(\alpha \to \bot), \, \mu(\bot) = 0, \, \mu(\top) = 1. \end{split}$$

Motivation and Aim	Forest of Assignments	Main Result	Conclusion 000
Gödel Logic			

- Let us consider well-formed formulas over propositional variables X₁, X₂,... in the language ∧, ∨, →, ¬, ⊥, ⊤.
- By an *assignment* in Gödel logic we shall mean a function μ from (well-formed) formulas to [0, 1] such that, for any two such formulas α , β ,

$$\mu(\alpha \land \beta) = \min\{\mu(\alpha), \mu(\beta)\} \\ \mu(\alpha \lor \beta) = \max\{\mu(\alpha), \mu(\beta)\} \\ \mu(\alpha \to \beta) = \begin{cases} 1 & \text{if } \mu(\alpha) \le \mu(\beta) \\ \mu(\beta) & \text{otherwise} \end{cases} \\ \text{and } \mu(\neg \alpha) = \mu(\alpha \to \bot), \mu(\bot) = 0, \mu(\top) = 1. \end{cases}$$

A *tautology* is a formula α such that μ(α) = 1 for every assignment μ.

Motivation and Aim	Forest of Assignments	Main Result	Conclusion 000
Gödel Logic			

- Let us consider well-formed formulas over propositional variables X₁, X₂,... in the language ∧, ∨, →, ¬, ⊥, ⊤.
- By an *assignment* in Gödel logic we shall mean a function μ from (well-formed) formulas to [0, 1] such that, for any two such formulas α , β ,

$$\begin{split} \mu(\alpha \land \beta) &= \min\{\mu(\alpha), \mu(\beta)\} \\ \mu(\alpha \lor \beta) &= \max\{\mu(\alpha), \mu(\beta)\} \\ \mu(\alpha \to \beta) &= \begin{cases} 1 & \text{if } \mu(\alpha) \le \mu(\beta) \\ \mu(\beta) & \text{otherwise} \end{cases} \\ \text{and } \mu(\neg \alpha) &= \mu(\alpha \to \bot), \, \mu(\bot) = 0, \, \mu(\top) = 1. \end{split}$$

- A *tautology* is a formula α such that μ(α) = 1 for every assignment μ.
- Gödel logic is complete with respect to this many-valued semantics.

Motivation and Aim ○○○○●○	Forest of Assignments	Main Result	Conclusion
The Theory of P			

Suppose f₁,..., f_n provide truth values for the propositions X₁,..., X_n in Gödel logic. We can describe the theory encoded by P = {f₁,..., f_n} by the set of axioms Θ(P) = {α(X₁,..., X_n) | μ(α) = 1 ∀μ s.t. ∃x ∀i μ(X_i) = f_i(x)}

(日) (日) (日) (日) (日) (日) (日) (日)

Motivation and Aim ○○○○●○	Forest of Assignments	Main Result	Conclusion 000
The Theory of P			

- Suppose f₁,..., f_n provide truth values for the propositions X₁,..., X_n in Gödel logic. We can describe the theory encoded by P = {f₁,..., f_n} by the set of axioms Θ(P) = {α(X₁,..., X_n) | μ(α) = 1 ∀μ s.t. ∃x ∀i μ(X_i) = f_i(x)}
- In Gödel logic Θ(P) is finitely axiomatizable, because the number of variables is finite. Thus, there exists a single axiom α_P which axiomatizes Θ(P), that is ∀β ∈ FORM, α_P ⊢ β ⇔ β ∈ Θ(P).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Motivation and Aim ○○○○●○	Forest of Assignments	Main Result	Conclusion 000
The Theory of P			

- Suppose f₁,..., f_n provide truth values for the propositions X₁,..., X_n in Gödel logic. We can describe the theory encoded by P = {f₁,..., f_n} by the set of axioms Θ(P) = {α(X₁,..., X_n) | μ(α) = 1 ∀μ s.t. ∃x ∀i μ(X_i) = f_i(x)}
- In Gödel logic Θ(P) is finitely axiomatizable, because the number of variables is finite. Thus, there exists a single axiom α_P which axiomatizes Θ(P), that is ∀β ∈ FORM, α_P ⊢ β ⇔ β ∈ Θ(P).
- We note that *α_P* is uniquely determined by *P* up to logical equivalence.

Motivation and Aim ○○○○●○	Forest of Assignments	Main Result	Conclusion 000
The Theory of P			

- Suppose f₁,..., f_n provide truth values for the propositions X₁,..., X_n in Gödel logic. We can describe the theory encoded by P = {f₁,..., f_n} by the set of axioms Θ(P) = {α(X₁,..., X_n) | μ(α) = 1 ∀μ s.t. ∃x ∀i μ(X_i) = f_i(x)}
- In Gödel logic Θ(P) is finitely axiomatizable, because the number of variables is finite. Thus, there exists a single axiom α_P which axiomatizes Θ(P), that is ∀β ∈ FORM, α_P ⊢ β ⇔ β ∈ Θ(P).
- We note that *α_P* is uniquely determined by *P* up to logical equivalence.
- *α_P* encodes all relations between the fuzzy sets *f*₁,..., *f_n* that Gödel logic is capable to express.

Motivation and Aim ○○○○○●	Forest of Assignments	Main Result	Conclusion 000
The Theory of Rus	pini Partitions		

Our paper answers the following question:

Does Gödel logic have sufficient expressive power to capture the Ruspini Condition?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Motivation and Aim ○○○○○●	Forest of Assignments	Main Result	Conclusion
The Theory of Rusp	ini Partitions		

Our paper answers the following question:

Does Gödel logic have sufficient expressive power to capture the Ruspini Condition?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• The answer is no.

Motivation and Aim ○○○○○●	Forest of Assignments	Main Result	Conclusion	

The Theory of Ruspini Partitions

Our paper answers the following question:

Does Gödel logic have sufficient expressive power to capture the Ruspini Condition?

- The answer is no.
- However, we prove that Gödel logic does capture a weaker Ruspini condition.

Motivation and Aim ○○○○○●	Forest of Assignments	Main Result	Conclusion
The Theory of D			

The Theory of Ruspini Partitions

Our paper answers the following question:

Does Gödel logic have sufficient expressive power to capture the Ruspini Condition?

- The answer is no.
- However, we prove that Gödel logic does capture a weaker Ruspini condition.
- We will show that our weaker Ruspini condition indeed is the best approximation of Ruspini partitions in Gödel logic.

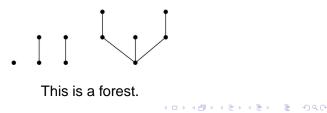
	00000	0000000	000
Motivation and Aim	Forest of Assignments	Main Result	Conclusion

Forests and Subforests

- We need to introduce a specific forest built from assignments that plays a key role in the following.
- Recall that, given a poset (*F*, ≤) and a set Q ⊆ *F*, the downset of Q is

$$\downarrow \mathsf{Q} = \{ x \in \mathsf{F} \mid x \leq q, \text{ for some } q \in \mathsf{Q} \}.$$

A poset *F* is a *forest* if for all *q* ∈ *F* the downset ↓ {*q*} is a chain (*i.e.*, a totally ordered set). A *subforest* of a forest *F* is the downset of some *Q* ⊆ *F*.



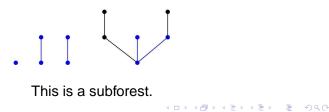
Motivation and Aim	Forest of Assignments	Main Result	Conclusion

Forests and Subforests

- We need to introduce a specific forest built from assignments that plays a key role in the following.
- Recall that, given a poset (*F*, ≤) and a set Q ⊆ *F*, the downset of Q is

$$\downarrow \mathsf{Q} = \{ x \in \mathsf{F} \mid x \leq q, \text{ for some } q \in \mathsf{Q} \}.$$

A poset *F* is a *forest* if for all *q* ∈ *F* the downset ↓ {*q*} is a chain (*i.e.*, a totally ordered set). A *subforest* of a forest *F* is the downset of some *Q* ⊆ *F*.



Forests and Subforests

- We need to introduce a specific forest built from assignments that plays a key role in the following.
- Recall that, given a poset (*F*, ≤) and a set Q ⊆ *F*, the downset of Q is

$$\downarrow \mathsf{Q} = \{ x \in \mathsf{F} \mid x \leq q, \text{ for some } q \in \mathsf{Q} \}.$$

A poset *F* is a *forest* if for all *q* ∈ *F* the downset ↓ {*q*} is a chain (*i.e.*, a totally ordered set). A *subforest* of a forest *F* is the downset of some *Q* ⊆ *F*.

This is not a subforest.

Motivation and Aim	Forest of Assignments o●oooo	Main Result	Conclusion 000
The Forest \mathscr{F}_n			

• We say that two assignments μ and ν are *equivalent over* the first *n*-variables, written $\mu \equiv_n \nu$, if and only if for any well-formed formula $\alpha(X_1, \ldots, X_n)$ in Gödel logic

$$\mu(\alpha(X_1,\ldots,X_n))=1 \quad \Leftrightarrow \ \nu(\alpha(X_1,\ldots,X_n))=1.$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Motivation and Aim	Forest of Assignments o●oooo	Main Result	Conclusion 000
The Forest \mathscr{F}_n			

 We say that two assignments μ and ν are *equivalent over* the first n-variables, written μ ≡_n ν, if and only if for any well-formed formula α(X₁,..., X_n) in Gödel logic

$$\mu(\alpha(X_1,\ldots,X_n))=1 \iff \nu(\alpha(X_1,\ldots,X_n))=1.$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

• \equiv_n is an equivalence relation. We denote with \mathscr{F}_n the (finite) set of all equivalence classes \equiv_n .

Motivation and Aim	Forest of Assignments	Main Result	Conclusion 000
The Forest \mathscr{F}_n			

 We say that two assignments μ and ν are *equivalent over* the first n-variables, written μ ≡_n ν, if and only if for any well-formed formula α(X₁,...,X_n) in Gödel logic

$$\mu(\alpha(X_1,\ldots,X_n))=1 \iff \nu(\alpha(X_1,\ldots,X_n))=1.$$

(日) (日) (日) (日) (日) (日) (日) (日)

- \equiv_n is an equivalence relation. We denote with \mathscr{F}_n the (finite) set of all equivalence classes \equiv_n .
- We define an appropriate partial order \leq on \mathscr{F}_n .

Motivation and Aim	Forest of Assignments	Main Result	Conclusion 000
The Forest \mathscr{F}_n			

 We say that two assignments μ and ν are *equivalent over* the first n-variables, written μ ≡_n ν, if and only if for any well-formed formula α(X₁,...,X_n) in Gödel logic

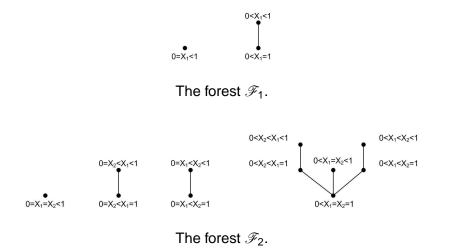
$$\mu(\alpha(X_1,\ldots,X_n))=1 \iff \nu(\alpha(X_1,\ldots,X_n))=1.$$

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

- \equiv_n is an equivalence relation. We denote with \mathscr{F}_n the (finite) set of all equivalence classes \equiv_n .
- We define an appropriate partial order \leq on \mathscr{F}_n .
- (\mathscr{F}_n, \leq) is a forest.

Motivation and Aim	Forest of Assignments	Main Result	Conclusion 000
Examples: \mathcal{F}_1 and \mathcal{F}_2			

Motivation and Aim	Forest of Assignments	Main Result	Conclusion 000
Examples: \mathcal{F}_1	and \mathscr{F}_2		



▲□▶▲□▶▲□▶▲□▶ □ のへで

Motivation and Aim	Forest of Assignments ○○○●○○	Main Result	Conclusion
The Forest $\mathscr{F}_{\alpha_{P}}$			

• Given a formula $\alpha(X_1, \ldots, X_n)$, the set

$$\mathscr{F}_{\alpha} = \{ [\mu]_{\equiv_n} \in \mathscr{F}_n \mid \mu(\alpha) = 1 \}$$

is a subforest of \mathscr{F}_n . Clearly, \mathscr{F}_{α} does not depend on the choice of μ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Motivation and Aim	Forest of Assignments	Main Result	Conclusion 000
The Forest $\mathscr{F}_{\alpha_{P}}$			

• Given a formula $\alpha(X_1, \ldots, X_n)$, the set

$$\mathscr{F}_{\alpha} = \{ [\mu]_{\equiv_n} \in \mathscr{F}_n \mid \mu(\alpha) = 1 \}$$

is a subforest of \mathscr{F}_n . Clearly, \mathscr{F}_{α} does not depend on the choice of μ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• For each subforest $F \subseteq \mathscr{F}_n$, there exists a formula $\alpha(X_1, \ldots, X_n)$ such that $\mathscr{F}_\alpha = F$.

Motivation and Aim	Forest of Assignments	Main Result	Conclusion
The Forest %			

• Given a formula $\alpha(X_1, \ldots, X_n)$, the set

$$\mathscr{F}_{\alpha} = \{ [\mu]_{\equiv_n} \in \mathscr{F}_n \mid \mu(\alpha) = 1 \}$$

is a subforest of \mathscr{F}_n . Clearly, \mathscr{F}_{α} does not depend on the choice of μ .

(日) (日) (日) (日) (日) (日) (日) (日)

- For each subforest $F \subseteq \mathscr{F}_n$, there exists a formula $\alpha(X_1, \ldots, X_n)$ such that $\mathscr{F}_\alpha = F$.
- We associate with the family of the fuzzy sets *P* the uniquely determined subforest *F*_{αP} ⊆ *F*_n.

Motivation and Aim	Forest of Assignments ○○○○●○	Main Result	Conclusion 000
The Forest $\mathcal{F}(P)$			

• Let $[\mu]_{\equiv_n} \in \mathscr{F}_n$ and $x \in [0, 1]$. We say $[\mu]_{\equiv_n}$ is *realized by* P at x if there exists a permutation $\sigma : \underline{n} \to \underline{n}$ such that

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$0 \leq_0 f_{\sigma(1)}(x) \leq_1 \cdots \leq_{n-1} f_{\sigma(n)}(x) \leq_n 1,$$
$$0 \leq_0 \mu(X_{\sigma(1)}) \leq_1 \cdots \leq_{n-1} \mu(X_{\sigma(n)}) \leq_n 1,$$
where $\leq_i \in \{<,=\}, i \in \{0,\ldots,n\}.$

Motivation and Aim	Forest of Assignments ○○○○●○	Main Result	Conclusion 000
The Forest $\mathscr{F}(P)$			

Let [μ]_{≡n} ∈ ℱ_n and x ∈ [0, 1]. We say [μ]_{≡n} is realized by P at x if there exists a permutation σ : <u>n</u> → <u>n</u> such that

$$0 \leq_0 f_{\sigma(1)}(x) \leq_1 \cdots \leq_{n-1} f_{\sigma(n)}(x) \leq_n 1,$$
$$0 \leq_0 \mu(X_{\sigma(1)}) \leq_1 \cdots \leq_{n-1} \mu(X_{\sigma(n)}) \leq_n 1,$$
where $\leq_i \in \{<, =\}, i \in \{0, \dots, n\}.$

Definition

٧

 $\mathscr{F}(P) = \downarrow \{ [\mu]_{\equiv_n} \in \mathscr{F}_n | [\mu]_{\equiv_n} \text{ is realized by } P \text{ at some } x \in [0, 1] \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation and Aim	Forest of Assignments ○○○○●○	Main Result	Conclusion 000
The Forest $\mathscr{F}(P)$			

Let [μ]_{≡n} ∈ ℱ_n and x ∈ [0, 1]. We say [μ]_{≡n} is realized by P at x if there exists a permutation σ : <u>n</u> → <u>n</u> such that

$$0 \leq_0 f_{\sigma(1)}(\mathbf{x}) \leq_1 \cdots \leq_{n-1} f_{\sigma(n)}(\mathbf{x}) \leq_n 1,$$
$$0 \leq_0 \mu(X_{\sigma(1)}) \leq_1 \cdots \leq_{n-1} \mu(X_{\sigma(n)}) \leq_n 1,$$
where $\leq_i \in \{<,=\}, i \in \{0,\ldots,n\}.$

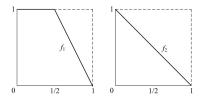
Definition

 $\mathscr{F}(P) = \downarrow \{ [\mu]_{\equiv_n} \in \mathscr{F}_n | [\mu]_{\equiv_n} \text{ is realized by } P \text{ at some } x \in [0, 1] \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

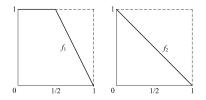
•
$$\mathscr{F}_{\alpha_{P}} = \mathscr{F}(P)$$

Motivation and Aim	Forest of Assignments 00000●	Main Result	Conclusion
Examples: The Fo	orest ℱ(P)		



A family P of fuzzy sets.

Motivation and Aim	Forest of Assignments	Main Result	Conclusion
Examples: The F	orest ℱ(P)		

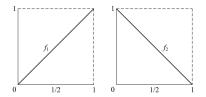


A family P of fuzzy sets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

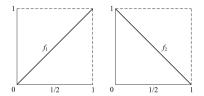
Motivation and Aim	Forest of Assignments	Main Result	Conclusion
000000	000000	●000000	000

Take $P = \{f_1, f_2\}$ as follows. *P* is a Ruspini partition.

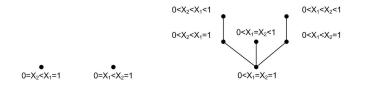


Motivation and Aim	Forest of Assignments	Main Result	Conclusion
000000	000000	000000	000

Take $P = \{f_1, f_2\}$ as follows. *P* is a Ruspini partition.



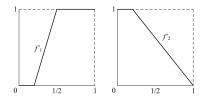
Then, $\mathscr{F}(P)$ is the following.



(ロ) (同) (三) (三) (三) (三) (○) (○)

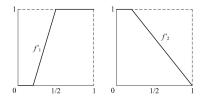
Motivation and Aim	Forest of Assignments	Main Result	Conclusion
000000	000000	000000	000

Take $P' = \{f'_1, f'_2\}$ as follows. P' is not a Ruspini partition.

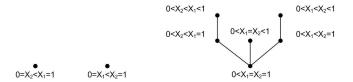


Motivation and Aim	Forest of Assignments	Main Result	Conclusion
000000	000000	000000	000

Take $P' = \{f'_1, f'_2\}$ as follows. P' is not a Ruspini partition.

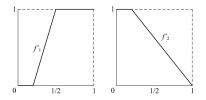


Then, $\mathscr{F}(P') = \mathscr{F}(P)$.

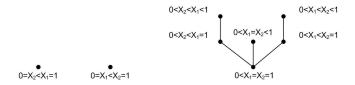


Motivation and Aim	Forest of Assignments	Main Result	Conclusion
000000	000000	000000	000

Take $P' = \{f'_1, f'_2\}$ as follows. P' is not a Ruspini partition.



Then, $\mathscr{F}(P') = \mathscr{F}(P)$.



● Gödel logic cannot distinguish P' from P.

Motivation and Aim	Forest of Assignments	Main Result oo●oooo	Conclusion 000
Weak Ruspini I	Partition		

Let $\lambda : [0, 1] \rightarrow [0, 1]$ be an order preserving map such that $\lambda(0) = 0$ and $\lambda(1) = 1$, and let $t = \inf \lambda^{-1}(1)$. If the restriction of λ to [0, t] is an order isomorphism between [0, t] and [0, 1], we say λ is a *comparison map*.

Definition

We say *P* is a *weak Ruspini partition* if for all $x \in [0, 1]$, there exist $y \in [0, 1]$, a comparison map λ , and an order isomorphism $\gamma : [0, 1] \rightarrow [0, 1]$ such that (i) $\lambda(f_i(y)) = f_i(x)$, for all $i \in \underline{n}$. (ii) $\sum_{i=1}^n \gamma(f_i(y)) = 1$.

Motivation and Aim	Forest of Assignments	Main Result	Conclusion
000000	000000	000000	000

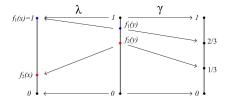
Weak Ruspini Partition, an Example

A weak Ruspini partition $P = \{f_1, f_2\}$.

Motivation and Aim	Forest of Assignments	Main Result	Cor
000000	000000	000000	000

Weak Ruspini Partition, an Example

A weak Ruspini partition $P = \{f_1, f_2\}$.



How the maps λ and γ work.

・ロト・西ト・西ト・西ト・日・

Motivation and Aim	Forest of Assignments	Main Result oooo●oo	Conclusion 000
Ruspini Subforest			

We denote by \mathscr{R}_n the subforest of \mathscr{F}_n obtained by removing from \mathscr{F}_n the single tree having height 1, and the leaves of all the trees having height 2. We call \mathscr{R}_n the *Ruspini forest*.

Definition

We say that a forest *F* is a *Ruspini subforest* if $F \subseteq \mathscr{R}_n$ and each leaf of *F* is a leaf of \mathscr{R}_n .

Motivation and Aim	Forest of Assignments	Main Result ○○○○○●○	Conclusion
Ruspini Axiom			

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We define the *Ruspini axiom* $\rho_n = \alpha \lor \beta$, where $\alpha = \bigvee_{1 \le i < j \le n} (\neg \neg X_i \land \neg \neg X_j),$ $\beta = \bigvee_{1 \le i < n} (X_i \land \bigwedge_{1 \le i \ne j \le n} \neg X_j).$

Motivation and Aim	Forest of Assignments	Main Result ooooo●o	Conclusion
Ruspini Axiom			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We define the *Ruspini axiom* $\rho_n = \alpha \lor \beta$, where $\alpha = \bigvee_{1 \le i < j \le n} (\neg \neg X_i \land \neg \neg X_j)$,

$$\beta = \bigvee_{1 \le i \le n} (X_i \land \bigwedge_{1 \le j \ne i \le n} \neg X_j).$$

Lemma

$$\mathscr{F}_{\rho_n} = \mathscr{R}_n$$
 .

Motivation and Aim	Forest of Assignments	Main Result ○○○○○●	Conclusion 000

Main Result

Theorem

The following are equivalent.

(i) P is a weak Ruspini partition.

(ii)
$$\mathscr{F}(P)$$
 is a Ruspini subforest.

(iii)
$$\vdash \alpha \land \beta \land \gamma$$
, where

$$\begin{aligned} \alpha &= (\alpha_P \to \rho_n), \\ \beta &= \bigwedge_{r \in \operatorname{Root}(\mathscr{R}_n)} \bigwedge_{l \in \operatorname{Leaf}(r, \mathscr{R}_n)} \left((\psi_l \to \alpha_P) \lor ((\psi_l \land \alpha_P) \to \psi_r) \right) \\ \gamma &= \bigwedge_{r \in \operatorname{Root}(\mathscr{R}_n)} \left((\psi_r \to \alpha_P) \to (\bigvee_{l \in \operatorname{Leaf}(r, \mathscr{R}_n)} (\psi_l \to \alpha_P)) \right). \end{aligned}$$

Moreover, for any Ruspini subforest F there exists a Ruspini partition $P' = \{f'_1, \ldots, f'_n\}$, with $f'_i : [0, 1] \rightarrow [0, 1]$, such that $\mathscr{F}(P') = F$.

Motivation and Aim	Forest of Assignments	Main Result	Conclusion ●○○
Conclusion			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 Our analysis shows that Gödel logic does not have sufficient expressive power to capture the Ruspini condition.

Motivation and Aim	Forest of Assignments	Main Result	Conclusion ●○○
Conclusion			

- Our analysis shows that Gödel logic does not have sufficient expressive power to capture the Ruspini condition.
- However, we have proved that Gödel logic does capture the notion of weak Ruspini partition.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Motivation and Aim	Forest of Assignments	Main Result	Conclusion ●○○
Conclusion			

- Our analysis shows that Gödel logic does not have sufficient expressive power to capture the Ruspini condition.
- However, we have proved that Gödel logic does capture the notion of weak Ruspini partition.
- Moreover, our Theorem shows that weak Ruspini partitions indeed are the best available approximations of Ruspini partitions in Gödel logic: for each weak Ruspini partition *P*, there exists a Ruspini partition *P*' such that there is no formula in Gödel logic telling *P* and *P*' apart.

(日) (日) (日) (日) (日) (日) (日) (日)

Motivation and Aim	Forest of Assignments	Main Result	Conclusion ●○○
Conclusion			

- Our analysis shows that Gödel logic does not have sufficient expressive power to capture the Ruspini condition.
- However, we have proved that Gödel logic does capture the notion of weak Ruspini partition.
- Moreover, our Theorem shows that weak Ruspini partitions indeed are the best available approximations of Ruspini partitions in Gödel logic: for each weak Ruspini partition *P*, there exists a Ruspini partition *P*' such that there is no formula in Gödel logic telling *P* and *P*' apart.
- Up to Gödel equivalence, there is a finite number of weak Ruspini partitions of *n* elements. In our paper an exact formula to compute this number is given.

Motivation and Aim	Forest of Assignments	Main Result	Conclusion ○●○
Further Work			

• To analyze the expressibility of the Ruspini condition in other, more powerful, many-valued logics (*i.e.* Łukasiewicz logic).

Motivation and Aim	Forest of Assignments	Main Result	Conclusion ○●○
Further Work			

- To analyze the expressibility of the Ruspini condition in other, more powerful, many-valued logics (*i.e.* Łukasiewicz logic).
- To study, in a similar way, expressibility of other conditions on families of fuzzy sets (normality, convexity, ...).

Motivation and Aim	Forest of Assignments	Main Result	Conclusion ○○●
Thank you			

Thank you for your attention ...

