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Ruspini Partitions

By a fuzzy set we mean a function f : [0,1] → [0,1].

Throughout this presentation, we fix a finite nonempty
family of fuzzy sets P = {f1, . . . , fn} .

In our paper we deal with particular families of fuzzy sets:
Ruspini partitions.

Definition
P is a Ruspini partition if for all x ∈ [0,1]

n
∑

i=1

fi(x) = 1 .
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Suppose that f1, f2 and f3 provide truth values for, say,
propositions about temperature in some many-valued logic L .

X1 = “The temperature is low”.

X2 = “The temperature is medium”.

X3 = “The temperature is high”.
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Motivation and Aim

Had one no information at all about such propositions, one
would be led to identify them with propositional variables
Xi , subject only to the axioms of L .

However, the set P = {f1, f2, f3} does encode information
about X1,X2,X3.

The set P leads one to add extra-logical axioms to L , e.g.
¬(X1 ∧ X3), in an attempt to express the fact that one
cannot observe both a high and a low temperature at the
same time. More generally, P implicitly encodes a theory
over the pure logic L .

Our work provides an analysis of how the Ruspini condition
on P is reflected by the resulting theory over L .

We take L to be Gödel logic.
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Let us consider well-formed formulas over propositional
variables X1,X2, . . . in the language ∧,∨,→,¬,⊥,⊤.

By an assignment in Gödel logic we shall mean a function
µ from (well-formed) formulas to [0,1] such that, for any
two such formulas α, β,
µ(α ∧ β) = min{µ(α), µ(β)}
µ(α ∨ β) = max{µ(α), µ(β)}

µ(α→ β) =

{

1 if µ(α) ≤ µ(β)
µ(β) otherwise

and µ(¬α) = µ(α→ ⊥), µ(⊥) = 0, µ(⊤) = 1.

A tautology is a formula α such that µ(α) = 1 for every
assignment µ.

Gödel logic is complete with respect to this many-valued
semantics.
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The Theory of P

Suppose f1, . . . , fn provide truth values for the propositions
X1, . . . ,Xn in Gödel logic. We can describe the theory
encoded by P = {f1, . . . , fn} by the set of axioms
Θ(P) = {α(X1, . . . ,Xn) |µ(α) = 1 ∀µ s.t. ∃x ∀i µ(Xi ) = fi(x)}

In Gödel logic Θ(P) is finitely axiomatizable, because the
number of variables is finite. Thus, there exists a single
axiom αP which axiomatizes Θ(P), that is
∀β ∈ FORM , αP ⊢ β ⇔ β ∈ Θ(P) .

We note that αP is uniquely determined by P up to logical
equivalence.

αP encodes all relations between the fuzzy sets f1, . . . , fn
that Gödel logic is capable to express.
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The Theory of Ruspini Partitions

Our paper answers the following question:

Does Gödel logic have sufficient expressive power to
capture the Ruspini Condition?

The answer is no.

However, we prove that Gödel logic does capture a weaker
Ruspini condition.

We will show that our weaker Ruspini condition indeed is
the best approximation of Ruspini partitions in Gödel logic.
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Forests and Subforests

We need to introduce a specific forest built from
assignments that plays a key role in the following.
Recall that, given a poset (F ,≤) and a set Q ⊆ F , the
downset of Q is

↓ Q = {x ∈ F | x ≤ q, for some q ∈ Q}.

A poset F is a forest if for all q ∈ F the downset ↓ {q} is a
chain (i.e., a totally ordered set). A subforest of a forest F
is the downset of some Q ⊆ F .

This is not a subforest.
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The Forest Fn

We say that two assignments µ and ν are equivalent over
the first n-variables, written µ ≡n ν, if and only if for any
well-formed formula α(X1, . . . ,Xn) in Gödel logic

µ(α(X1, . . . ,Xn)) = 1 ⇔ ν(α(X1, . . . ,Xn)) = 1 .

≡n is an equivalence relation. We denote with Fn the
(finite) set of all equivalence classes ≡n.

We define an appropriate partial order ≤ on Fn.

(Fn,≤) is a forest.
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The forest F1.

The forest F2.
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The Forest FαP

Given a formula α(X1, . . . ,Xn), the set

Fα = {[µ]≡n ∈ Fn | µ(α) = 1}

is a subforest of Fn. Clearly, Fα does not depend on the
choice of µ.

For each subforest F ⊆ Fn, there exists a formula
α(X1, . . . ,Xn) such that Fα = F .

We associate with the family of the fuzzy sets P the
uniquely determined subforest FαP ⊆ Fn.
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The Forest F (P)

Let [µ]≡n ∈ Fn and x ∈ [0,1]. We say [µ]≡n is realized by P
at x if there exists a permutation σ : n → n such that

0 �0 fσ(1)(x) �1 · · · �n−1 fσ(n)(x) �n 1 ,

0 �0 µ(Xσ(1)) �1 · · · �n−1 µ(Xσ(n)) �n 1 ,

where �i ∈ {<,=}, i ∈ {0, . . . ,n}.

Definition
F (P) = ↓ {[µ]≡n ∈ Fn | [µ]≡n is realized by P at some x ∈ [0,1]}

FαP = F (P)
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A family P of fuzzy sets.

The forest F (P).
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Gödel Logic Cannot Express Ruspini, a Counterexample

Take P ′ = {f ′1, f
′
2} as follows. P ′ is not a Ruspini partition.

Then, F (P ′) = F (P).

Gödel logic cannot distinguish P ′ from P.
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Weak Ruspini Partition

Let λ : [0,1] → [0,1] be an order preserving map such that
λ(0) = 0 and λ(1) = 1, and let t = infλ−1(1). If the restriction of
λ to [0, t] is an order isomorphism between [0, t] and [0,1], we
say λ is a comparison map.

Definition
We say P is a weak Ruspini partition if for all x ∈ [0,1], there
exist y ∈ [0,1], a comparison map λ, and an order isomorphism
γ : [0,1] → [0,1] such that

(i) λ(fi(y)) = fi(x), for all i ∈ n.

(ii)
∑n

i=1 γ(fi(y)) = 1.
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Weak Ruspini Partition, an Example

A weak Ruspini partition P = {f1, f2}.

How the maps λ and γ work.
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Ruspini Subforest

We denote by Rn the subforest of Fn obtained by removing
from Fn the single tree having height 1, and the leaves of all
the trees having height 2. We call Rn the Ruspini forest.

Definition
We say that a forest F is a Ruspini subforest if F ⊆ Rn and
each leaf of F is a leaf of Rn.
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∧
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Ruspini Axiom

We define the Ruspini axiom ρn = α ∨ β, where

α =
∨

1≤i<j≤n(¬¬Xi ∧ ¬¬Xj) ,

β =
∨

1≤i≤n(Xi ∧
∧

1≤j 6=i≤n ¬Xj) .

Lemma
Fρn = Rn .
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Main Result

Theorem
The following are equivalent.

(i) P is a weak Ruspini partition.

(ii) F (P) is a Ruspini subforest.

(iii) ⊢ α ∧ β ∧ γ, where
α = (αP → ρn),
β =

∧

r∈Root(Rn)

∧

l∈Leaf(r ,Rn)

(

(ψl → αP)∨ ((ψl ∧αP) → ψr )
)

,
γ =

∧

r∈Root(Rn)

(

(ψr → αP) → (
∨

l∈Leaf(r ,Rn)(ψl → αP))
)

.

Moreover, for any Ruspini subforest F there exists a Ruspini
partition P ′ = {f ′1, . . . , f

′
n}, with f ′i : [0,1] → [0,1], such that

F (P ′) = F .
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Conclusion

Our analysis shows that Gödel logic does not have
sufficient expressive power to capture the Ruspini
condition.

However, we have proved that Gödel logic does capture
the notion of weak Ruspini partition.

Moreover, our Theorem shows that weak Ruspini partitions
indeed are the best available approximations of Ruspini
partitions in Gödel logic: for each weak Ruspini partition P,
there exists a Ruspini partition P ′ such that there is no
formula in Gödel logic telling P and P ′ apart.

Up to Gödel equivalence, there is a finite number of weak
Ruspini partitions of n elements. In our paper an exact
formula to compute this number is given.
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Further Work

To analyze the expressibility of the Ruspini condition in
other, more powerful, many-valued logics (i.e. Łukasiewicz
logic).

To study, in a similar way, expressibility of other conditions
on families of fuzzy sets (normality, convexity, . . . ) .
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Thank you

Thank you for your attention . . .
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