Combinatorial descriptions of products in the category of forests and open order-preserving maps

Pietro Codara

Dipartimento di Informatica, Università degli Studi di Milano

(joint work with Ottavio M. D'Antona, and Vincenzo Marra)

Combinatorics 2014, Gaeta (LT) — June 3, 2014

Basic notions.

A forest is a finite poset F such that for every x ∈ F, ↓ x is a chain. A tree is a forest with a bottom element.

- A forest is a finite poset F such that for every x ∈ F, ↓ x is a chain. A tree is a forest with a bottom element.
- An order preserving map f:F
 ightarrow G is open iff, for every $x\in F,$

$$f(\downarrow x) = \downarrow f(x)$$
.

- A forest is a finite poset F such that for every x ∈ F, ↓ x is a chain. A tree is a forest with a bottom element.
- An order preserving map f:F
 ightarrow G is open iff, for every $x\in F,$

$$f(\downarrow x) = \downarrow f(x).$$

- A forest is a finite poset F such that for every x ∈ F, ↓ x is a chain. A tree is a forest with a bottom element.
- An order preserving map f:F
 ightarrow G is open iff, for every $x\in F,$

$$f(\downarrow x) = \downarrow f(x).$$

(The category of forests and open maps is dually equivalent to the category of finitely presented Gödel algebras.)

• An ordered partition σ is a sequence of pairwise disjoint nonempty sets.

- An ordered partition σ is a sequence of pairwise disjoint nonempty sets.
- Given ordered partitions $\sigma = \{A_1, \ldots, A_m\}$, and $\tau = \{B_1, \ldots, B_n\}$ with $m \leq n$ we write $\sigma \leq \tau$ iff $A_i = B_i$ for every $i \in \{1, \ldots, m\}$.

- An ordered partition σ is a sequence of pairwise disjoint nonempty sets.
- Given ordered partitions $\sigma = \{A_1, \ldots, A_m\}$, and $\tau = \{B_1, \ldots, B_n\}$ with $m \leq n$ we write $\sigma \leq \tau$ iff $A_i = B_i$ for every $i \in \{1, \ldots, m\}$.
- Let σ and τ be ordered partitions with disjoint supports. An ordered partition θ is a shuffle of σ and τ iff σ and τ are subsequences of θ, and suppθ = suppσ∪ suppτ;

- An ordered partition σ is a sequence of pairwise disjoint nonempty sets.
- Given ordered partitions $\sigma = \{A_1, \ldots, A_m\}$, and $\tau = \{B_1, \ldots, B_n\}$ with $m \leq n$ we write $\sigma \leq \tau$ iff $A_i = B_i$ for every $i \in \{1, \ldots, m\}$.
- Let σ and τ be ordered partitions with disjoint supports. An ordered partition θ is a shuffle of σ and τ iff σ and τ are subsequences of θ, and suppθ = suppσ∪ suppτ;
- a merged shuffle is obtained by a shuffle θ, by merging some consecutive pairs of blocks A, B ∈ θ, with A ∈ σ, and B ∈ τ.

- An ordered partition σ is a sequence of pairwise disjoint nonempty sets.
- Given ordered partitions $\sigma = \{A_1, \ldots, A_m\}$, and $\tau = \{B_1, \ldots, B_n\}$ with $m \leq n$ we write $\sigma \leq \tau$ iff $A_i = B_i$ for every $i \in \{1, \ldots, m\}$.
- Let σ and τ be ordered partitions with disjoint supports. An ordered partition θ is a shuffle of σ and τ iff σ and τ are subsequences of θ, and suppθ = suppσ∪ suppτ;
- a merged shuffle is obtained by a shuffle θ, by merging some consecutive pairs of blocks A, B ∈ θ, with A ∈ σ, and B ∈ τ.

Example. Let $\sigma = \{a|b\}$ and $\tau = \{x\}$. The merged shuffles of σ and τ are: $\{a|b|x\}, \{a|x|b\}, \{x|a|b\}, \{a|bx\}, \{ax|b\}$.

Trees of ordered partitions

We can label trees with ordered partitions...

Enumeration

Trees of ordered partitions

We can label trees with ordered partitions...

Enumeration

Trees of ordered partitions

We can label trees with ordered partitions...

We can build a tree from a set of ordered partitions. The tree of merged shuffles of $\sigma = \{a|b\}$ and $\tau = \{x\}$ is...

Enumeration

Trees of ordered partitions

We can label trees with ordered partitions...

We can build a tree from a set of ordered partitions. The tree of merged shuffles of $\sigma = \{a|b\}$ and $\tau = \{x\}$ is...

Product of forests.

Product of forests

• Let
$$F = \{T_1, ..., T_r\}$$
 and $G = \{U_1, ..., U_s\}$ be forests.
 $F \times G = \{T_i \times U_j\}, i \in \{1, ..., r\}, j \in \{1, ..., s\}.$

Product of forests

- Let $F = \{T_1, \ldots, T_r\}$ and $G = \{U_1, \ldots, U_s\}$ be forests. $F \times G = \{T_i \times U_j\}, i \in \{1, \ldots, r\}, j \in \{1, \ldots, s\}.$
- The problem of describing $F \times G$ is reduced to that of describing its trees.

Product of forests

- Let $F = \{T_1, ..., T_r\}$ and $G = \{U_1, ..., U_s\}$ be forests. $F \times G = \{T_i \times U_j\}, i \in \{1, ..., r\}, j \in \{1, ..., s\}.$
- The problem of describing $F \times G$ is reduced to that of describing its trees.

How to compute the product of trees?

• If
$$|F| = 1$$
, then $F \times G \cong G$.

- If |F| = 1, then $F \times G \cong G$.
- $(F + G) \times H \cong (F \times H) + (G \times H).$

- If |F| = 1, then $F \times G \cong G$.
- $(F + G) \times H \cong (F \times H) + (G \times H).$
- $F_{\perp} \times G_{\perp} \cong ((F \times G_{\perp}) + (F \times G) + (F_{\perp} \times G))_{\perp}.$

Enumeration.

Delannoy numbers

The Delannoy number $D_{n,m}$ counts the number of lattice paths from (0,0) to (n,m) in which only East, North, and Northeast steps are allowed. Delannoy numbers satisfy the following recurrence relation.

$$D_{n,m} = D_{n-1,m} + D_{n,m-1} + D_{n-1,m-1}$$

Delannoy numbers

The Delannoy number $D_{n,m}$ counts the number of lattice paths from (0,0) to (n,m) in which only East, North, and Northeast steps are allowed. Delannoy numbers satisfy the following recurrence relation.

$$D_{n,m} = D_{n-1,m} + D_{n,m-1} + D_{n-1,m-1}$$

The following table shows some values of Delannoy numbers.

1	1	1	1	1	1	1	1
1	3	5	7	9	11	13	15
1	5	13	25	41	61	85	113
1	7	25	63	129	231	377	575
1	9	41	129	321	681	1289	2241
1	11	61	231	681	1683	3653	7183

$$|T imes U| = \sum_{i\geq 0} \sum_{j\geq 0} t_i u_j D_{i,j} \ ,$$

where t_i is the number of elements at level *i* of *T*, and u_j is the number of elements at level *j* of *U*.

$$|\,T imes \, U| = \sum_{i \geq 0} \sum_{j \geq 0} t_i u_j \, D_{i,j} \; ,$$

where t_i is the number of elements at level i of T, and u_j is the number of elements at level j of U. Example.

 $= 1 \cdot 1 \cdot D_{0,0} + 1 \cdot 1 \cdot D_{0,1} + 1 \cdot 2 \cdot D_{0,2} + 1 \cdot 1 \cdot D_{1,0} + 1 \cdot 1 \cdot D_{1,1} + 1 \cdot 2 \cdot D_{1,2} =$ = 1 + 1 + 2 + 1 + 3 + 10 = 18.

Let L_T be the row vector of length $n = \operatorname{high}(T)$ containing the level numbers of the tree T. Let L_U be the column vector of height $m = \operatorname{high}(U)$ containing the level numbers of the tree U. Let $\mathcal{D}_{n,m}$ be the $n \times m$ matrix such that $\mathcal{D}[i,j] = D_{i,j}$, for each i, j. Then,

 $|T \times U| = L_T \times \mathcal{D}_{n,m} \times L_U$.

Let L_T be the row vector of length $n = \operatorname{high}(T)$ containing the level numbers of the tree T. Let L_U be the column vector of height $m = \operatorname{high}(U)$ containing the level numbers of the tree U. Let $\mathcal{D}_{n,m}$ be the $n \times m$ matrix such that $\mathcal{D}[i,j] = D_{i,j}$, for each i, j. Then,

$$|T imes U| = L_T imes \mathcal{D}_{n,m} imes L_U$$
 .

Example.

Let $L_{T imes U}[h]$ be h^{th} level number of the product tree T imes U, for $h \ge 0$.

Let $L_{T \times U}[h]$ be h^{th} level number of the product tree $T \times U$, for $h \ge 0$. Clearly, $L_{T \times U}[0] = 1$.

Let $L_{T \times U}[h]$ be h^{th} level number of the product tree $T \times U$, for $h \ge 0$. Clearly, $L_{T \times U}[0] = 1$. For h > 1, $L_{T \times U}[h]$ is the number of Delannoy paths, with their multiplicity, of length hcontained in (0,0) - (high(T), high(U)).

Let $L_{T \times U}[h]$ be h^{th} level number of the product tree $T \times U$, for $h \ge 0$. Clearly, $L_{T \times U}[0] = 1$. For h > 1, $L_{T \times U}[h]$ is the number of Delannoy paths, with their multiplicity, of length hcontained in (0,0) - (high(T), high(U)). Example.

Let $L_{T\times U}[h]$ be h^{th} level number of the product tree $T \times U$, for $h \ge 0$. Clearly, $L_{T\times U}[0] = 1$. For h > 1, $L_{T\times U}[h]$ is the number of Delannoy paths, with their multiplicity, of length hcontained in (0,0) - (high(T), high(U)). Example.

Let $L_{T\times U}[h]$ be h^{th} level number of the product tree $T \times U$, for $h \ge 0$. Clearly, $L_{T\times U}[0] = 1$. For h > 1, $L_{T\times U}[h]$ is the number of Delannoy paths, with their multiplicity, of length hcontained in (0,0) - (high(T), high(U)). Example.

Let $L_{T\times U}[h]$ be h^{th} level number of the product tree $T \times U$, for $h \ge 0$. Clearly, $L_{T\times U}[0] = 1$. For h > 1, $L_{T\times U}[h]$ is the number of Delannoy paths, with their multiplicity, of length hcontained in (0,0) - (high(T), high(U)). Example.

Let $L_{T \times U}[h]$ be h^{th} level number of the product tree $T \times U$, for $h \ge 0$. Clearly, $L_{T \times U}[0] = 1$. For h > 1, $L_{T \times U}[h]$ is the number of Delannoy paths, with their multiplicity, of length hcontained in (0,0) - (high(T), high(U)). Example.

Thank you for your attention.