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A category of forests

A forest is a �nite poset F such that for every x ∈ F , ↓ x
is a chain. A tree is a forest with a bottom element.

An order preserving map f : F → G is open i�, for every

x ∈ F ,

f (↓ x ) = ↓ f (x ) .

x

f(x)

(The category of forests and open maps is dually equivalent to

the category of �nitely presented Gödel algebras.)
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Ordered partitions, and merged shu�es

An ordered partition σ is a sequence of pairwise disjoint

nonempty sets.

Given ordered partitions σ = {A1, . . . ,Am }, and

τ = {B1, . . . ,Bn } with m ≤ n we write σ ≤ τ i� Ai = Bi

for every i ∈ {1, . . . ,m}.

Let σ and τ be ordered partitions with disjoint supports.

An ordered partition θ is a shu�e of σ and τ i� σ and τ

are subsequences of θ, and suppθ = suppσ ∪ suppτ;
a merged shu�e is obtained by a shu�e θ, by merging

some consecutive pairs of blocks A,B ∈ θ, with A ∈ σ, and
B ∈ τ.

Example. Let σ = {a |b} and τ = {x }. The merged shu�es of σ

and τ are: {a |b|x }, {a |x |b}, {x |a |b}, {a |bx }, {ax |b}.
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Trees of ordered partitions

We can label trees with ordered partitions...

∅

x

∅

a

a|b a|c

We can build a tree from a set of ordered partitions. The tree

of merged shu�es of σ = {a |b} and τ = {x } is...

∅

x

x|a

x|a|b

a ax

ax|ba|bx

a|x|ba|b|x

a|b a|x
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Product of forests

Let F = {T1, . . . ,Tr } and G = {U1, . . . ,Us } be forests.

F ×G = {Ti ×Uj }, i ∈ {1, . . . , r }, j ∈ {1, . . . , s}.

The problem of describing F ×G is reduced to that of

describing its trees.

How to compute the product of trees?
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Product of trees

Computing the product of trees (an example).
[D'Antona, O.M., and Marra, V., Computing coproducts of �nitely

presented Gödel algebras, Ann. Pure Appl. Logic 142 (2006), 202�211]

∅

x

∅

a

a|b a|c

× =

∅
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Product of forests, an alternative way

Let F , G , and H be three forests.

If |F | = 1, then F ×G ∼= G .

(F +G)×H ∼= (F ×H ) + (G ×H ).

F⊥ ×G⊥ ∼= ((F ×G⊥) + (F ×G) + (F⊥ ×G))⊥.
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Product of trees, an alternative way

Computing the product of trees (an example).
[Aguzzoli, S., Bova, S., and Gerla, B., Free Algebra and Functional

Representation for Fuzzy Logics, in Handbook of Mathematical Fuzzy

Logic - Vol. 2, P. Cintula, P. Hájek, C. Noguera, eds., Studies in Logic, Vol.

38, College Pubblications, London (2011), 713�791]

× = × × ×+ +
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Delannoy numbers

The Delannoy number Dn ,m counts the number of lattice paths

from (0, 0) to (n ,m) in which only East, North, and Northeast

steps are allowed. Delannoy numbers satisfy the following

recurrence relation.

Dn ,m = Dn−1,m +Dn ,m−1 +Dn−1,m−1

The following table shows some values of Delannoy numbers.

1 1 1 1 1 1 1 1

1 3 5 7 9 11 13 15

1 5 13 25 41 61 85 113

1 7 25 63 129 231 377 575

1 9 41 129 321 681 1289 2241

1 11 61 231 681 1683 3653 7183
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Delannoy numbers and ordered partitions, a simple case

In a simple case, one can associate each element of the product

with a Delannoy path, as follows.

× =

∅

x

a|b

a

∅

∅

ax ax

ax|b
a|b

a|b|x

x|a

x|a|b

a|bx

a|x|b

a|x

(1, 2)

(1, 1)

(1, 0)

(0, 1)

(0, 0)

(0, 2)

a

b

x
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Delannoy numbers and ordered partitions, the general case

In general, one can add multiplicity labels to Delannoy steps in

order to associate each Delannoy path to multiple elements of

the product, as follows.
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Formulæ, I

|T ×U | =
∑
i≥0

∑
j≥0

tiujDi ,j ,

where ti is the number of elements at level i of T , and uj is the

number of elements at level j of U .

Example.

∅

x

∅

a

a|b a|c

× =

= 1·1·D0,0+1·1·D0,1+1·2·D0,2+1·1·D1,0+1·1·D1,1+1·2·D1,2 =

= 1+ 1+ 2+ 1+ 3+ 10 = 18.
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Formulæ, II

Let LT be the row vector of length n = high(T ) containing

the level numbers of the tree T . Let LU be the column vector

of height m = high(U ) containing the level numbers of the

tree U . Let Dn ,m be the n ×m matrix such that D[i , j ] = Di ,j ,

for each i , j . Then,

|T ×U | = LT ×Dn ,m × LU .

Example.

∅

x

∅

a

a|b a|c

× =

[
1 1

]
×
[
1 1 1

1 3 5

]
×

11
2

 =
[
2 4 6

]
×

11
2

 = 18
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Formulæ, III

Let LT×U [h ] be h th level number of the product tree T ×U ,

for h ≥ 0.

Clearly, LT×U [0] = 1. For h > 1, LT×U [h ] is the

number of Delannoy paths, with their multiplicity, of length h

contained in (0, 0) − (high(T ),high(U )) .

Example.

∅

ax

ax|b ax|c a|bx a|cx

a|b|x a|c|x a|x|b a|x|c x|a|b x|a|c

a|b a|c a|x x|a

x
a

1

1

2 2 2

11

1

1
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Formulæ, IV

Finally, we can count the number of leaves of the three T ×U

after a certain number p of pruning, as in the following

example.

Example.
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1 10 paths
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Formulæ, IV
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1

1
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Formulæ, IV

Finally, we can count the number of leaves of the three T ×U

after a certain number p of pruning, as in the following
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∅

ax

ax|b ax|c a|bx a|cx
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x
a

1 path
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Thank you for your attention.
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