The independent subsets of powers of paths and cycles

Pietro Codara Ottavio M. D'Antona

Dipartimento di Informatica, Università degli Studi di Milano

Presenting author: Pietro Codara

Combinatorics 2012, Perugia — 13 September, 2012

In	t r	0	d i	τ.	1	

Outline

- Introduction: definitions, notation, and aims
- 2 The independent subsets of powers of paths
- **3** The poset of independent subsets of powers of paths
- The case of cycles

h-power of a paths and cycles — Definition

For a graph G we denote by V(G) the set of its vertices, and by E(G) the set of its edges.

h-power of a paths and cycles
For n, h ≥ 0,
(i) the h-power of a path, denoted by P_n^(h) is a graph with n vertices v₁, v₂,..., v_n such that, for 1 ≤ i, j ≤ n, (v_i, v_j) ∈ E(P_n^(h)) if and only if |j - i| ≤ h;

h-power of a paths and cycles — Definition

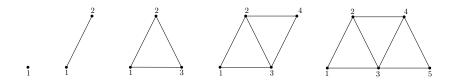
For a graph G we denote by V(G) the set of its vertices, and by E(G) the set of its edges.

h-power of a paths and cycles For n, h > 0, (i) the *h*-power of a path, denoted by $\mathbf{P}_n^{(h)}$ is a graph with *n* vertices v_1, v_2, \ldots, v_n such that, for $1 \leq i, j \leq n$, $(v_i, v_i) \in E(\mathbf{P}_n^{(h)})$ if and only if $|j-i| \leq h$; (ii) the *h*-power of a cycle, denoted by $\mathbf{Q}_n^{(h)}$ is a graph with *n* vertices v_1, v_2, \ldots, v_n such that, for $1 \leq i, j \leq n$, $(v_i, v_i) \in E(\mathbf{Q}_n^{(h)})$ if and only if |j - i| < h or |i-i| > n-h.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Evaluation of $p_n^{(h)}$	Evaluation of $H_n^{(h)}$	The case of cycles		

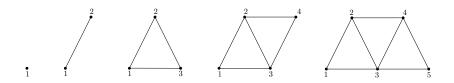
h-power of a paths and cycles — Example



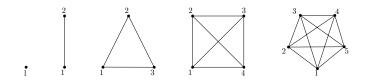
 $\mathbf{P}_n^{(0)}$ is the graph made of n isolated nodes, $\mathbf{P}_n^{(1)}$ is the path with n vertices \dots

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

h-power of a paths and cycles — Example



 $\mathbf{P}_n^{(0)}$ is the graph made of n isolated nodes, $\mathbf{P}_n^{(1)}$ is the path with n vertices \dots



 $\dots \mathbf{Q}_n^{(0)}$ is the graph made of n isolated nodes, and $\mathbf{Q}_n^{(1)}$ is the cycle with n vertices.

ション ふゆ マ キャット マックシン

Independent subsets

Independent subset

An independent subset S of a graph G is a subset of V(G) not containing adjacent vertices.

Independent subsets

Independent subset

An independent subset S of a graph G is a subset of V(G) not containing adjacent vertices.

In the first part of this presentation we evaluate $p_n^{(h)}$, i.e. the number of independent subsets of $\mathbf{P}_n^{(h)}$, and $H_n^{(h)}$, i.e. the number of edges of the Hasse diagram of the poset of independent subsets of $\mathbf{P}_n^{(h)}$ ordered by inclusion.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Independent subsets

Independent subset

An independent subset S of a graph G is a subset of V(G) not containing adjacent vertices.

In the first part of this presentation we evaluate $p_n^{(h)}$, i.e. the number of independent subsets of $\mathbf{P}_n^{(h)}$, and $H_n^{(h)}$, i.e. the number of edges of the Hasse diagram of the poset of independent subsets of $\mathbf{P}_n^{(h)}$ ordered by inclusion.

In the second part we briefly consider the case of cycles.

Introduction	Evaluation of $p_n^{(h)}$	Evaluation of $H_n^{(h)}$	The case of cycles
Connections			

Our main result is that, for $n, h \ge 0$, the sequence $H_n^{(h)}$ is obtained by convolving the sequence $\underbrace{1,\ldots,1}_{h}, p_0^{(h)}, p_1^{(h)}, \ldots, p_1^{(n-h-1)}$ with itself.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Introduction	Evaluation of $p_n^{(h)}$	Evaluation of $H_n^{(h)}$	The case of cycles
Connections			

Our main result is that, for $n, h \ge 0$, the sequence $H_n^{(h)}$ is obtained by convolving the sequence $\underbrace{1, \ldots, 1}_{h}, p_0^{(h)}, p_1^{(h)}, \ldots, p_1^{(n-h-1)}$ with itself.

On one hand, we generalize the known formula $n2^{n-1}$ for the number of edges of the Boolean algebra with n atoms.

うして ふゆう ふほう ふほう ふしつ

Introduction	Evaluation of $p_n^{(h)}$	Evaluation of $H_n^{(h)}$	The case of cycles
Connections			

Our main result is that, for $n, h \ge 0$, the sequence $H_n^{(h)}$ is obtained by convolving the sequence $\underbrace{1, \ldots, 1}_{h}, p_0^{(h)}, p_1^{(h)}, \ldots, p_1^{(n-h-1)}$ with itself.

On one hand, we generalize the known formula $n2^{n-1}$ for the number of edges of the Boolean algebra with n atoms. Indeed, we generalize the fact that $n2^{n-1}$ is obtained by the convolution of the sequence $\{2^n\}_{n>0}$.

うして ふゆう ふほう ふほう ふしつ

Introduction	Evaluation of $p_n^{(h)}$	Evaluation of $H_n^{(h)}$	The case of cycles
Connections			

Our main result is that, for $n, h \ge 0$, the sequence $H_n^{(h)}$ is obtained by convolving the sequence $\underbrace{1, \ldots, 1}_{h}, p_0^{(h)}, p_1^{(h)}, \ldots, p_1^{(n-h-1)}$ with itself.

On one hand, we generalize the known formula $n2^{n-1}$ for the number of edges of the Boolean algebra with n atoms. Indeed, we generalize the fact that $n2^{n-1}$ is obtained by the convolution of the sequence $\{2^n\}_{n>0}$.

From a different perspective, this work could be seen as another generalization of the convolved Fibonacci sequence.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

For $n, h, k \ge 0$, we denote by $p_{n,k}^{(h)}$ the number of independent k-subsets of $\mathbf{P}_n^{(h)}$. For convenience, we assume that $p_{n,k}^{(h)} = p_{0,k}^{(h)}$, whenever n < 0.

For $n, h, k \ge 0$, we denote by $p_{n,k}^{(h)}$ the number of independent k-subsets of $\mathbf{P}_n^{(h)}$. For convenience, we assume that $p_{n,k}^{(h)} = p_{0,k}^{(h)}$, whenever n < 0.

 $egin{aligned} \mathbf{Lemma} \ & \mathbf{For} \,\, n,h,k \geq 0, \ & p_{n,k}^{(h)} = egin{pmatrix} n-hk+h \ k \end{pmatrix}. \end{aligned}$

うして ふゆう ふほう ふほう ふしつ

For $n, h, k \ge 0$, we denote by $p_{n,k}^{(h)}$ the number of independent k-subsets of $\mathbf{P}_n^{(h)}$. For convenience, we assume that $p_{n,k}^{(h)} = p_{0,k}^{(h)}$, whenever n < 0.

Lemma

For $n, h, k \geq 0$,

$$p_{n,k}^{(h)}=inom{n-hk+h}{k}\,.$$

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Sketch of the proof. Establish a bijection between independent k-subset of $\mathbf{P}_n^{(h)}$ and k-subsets of a set with (n - hk + h) elements.

For $n, h, k \ge 0$, we denote by $p_{n,k}^{(h)}$ the number of independent k-subsets of $\mathbf{P}_n^{(h)}$. For convenience, we assume that $p_{n,k}^{(h)} = p_{0,k}^{(h)}$, whenever n < 0.

Lemma

For $n, h, k \geq 0$,

$$p_{n,k}^{(h)} = egin{pmatrix} n-hk+h \ k \end{pmatrix}.$$

Sketch of the proof. Establish a bijection between independent k-subset of $\mathbf{P}_n^{(h)}$ and k-subsets of a set with (n - hk + h) elements.

The coefficients $p_{n,k}^{(h)}$ also enjoy the property: $p_{n,k}^{(h)} = p_{n-k+1,k}^{(h-1)}$.

Introduction	Evaluation of $p_n^{(h)}$	Evaluation of $H_n^{(h)}$	The case of cycles
Evaluation	of $p_n^{(h)}$		

For $n, h \ge 0$, we denote by $p_n^{(h)}$ the number of all independent subsets of $\mathbf{P}_n^{(h)}$. We have:

$$p_n^{(h)} = \sum_{k \ge 0} p_{n,k}^{(h)} = \sum_{k=0}^{\lceil n/(h+1) \rceil} p_{n,k}^{(h)}.$$

For $n, h \ge 0$, we denote by $p_n^{(h)}$ the number of all independent subsets of $\mathbf{P}_n^{(h)}$. We have:

$$p_n^{(h)} = \sum_{k \geq 0} p_{n,k}^{(h)} = \sum_{k=0}^{\lceil n/(h+1) \rceil} p_{n,k}^{(h)}$$
 .

Lemma

For $n, h \ge 0$,

$$p_n^{(h)} = egin{cases} n+1 & ext{if} \;\; n \leq h+1\,, \ p_{n-1}^{(h)} + p_{n-h-1}^{(h)} & ext{if} \;\; n > h+1\,. \end{cases}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

For $n, h \ge 0$, we denote by $p_n^{(h)}$ the number of all independent subsets of $\mathbf{P}_n^{(h)}$. We have:

$$p_n^{(h)} = \sum_{k \geq 0} p_{n,k}^{(h)} = \sum_{k=0}^{\lceil n/(h+1)
ceil} p_{n,k}^{(h)}$$
 .

Lemma

For $n, h \ge 0$,

$$p_n^{(h)} = egin{cases} n+1 & ext{if} \;\; n \leq h+1\,, \ p_{n-1}^{(h)} + p_{n-h-1}^{(h)} & ext{if} \;\; n > h+1\,. \end{cases}$$

Sketch of the proof. Let \mathcal{I} be the set of all independent subsets of $\mathbf{P}_n^{(h)}$, let \mathcal{I}_{in} be the set of the independent subsets of $\mathbf{P}_n^{(h)}$ that contain v_n , and let $\mathcal{I}_{out} = \mathcal{I} \setminus \mathcal{I}_{in}$

The poset of independent subsets of power of paths

Let $\mathbf{H}_n^{(h)}$ be the Hasse diagram of the poset of independent subsets of $\mathbf{P}_n^{(h)}$ ordered by inclusion, and $H_n^{(h)}$ the number of the edges of the diagram.

The poset of independent subsets of power of paths

Let $\mathbf{H}_n^{(h)}$ be the Hasse diagram of the poset of independent subsets of $\mathbf{P}_n^{(h)}$ ordered by inclusion, and $H_n^{(h)}$ the number of the edges of the diagram.

Noting that in $\mathbf{H}_n^{(h)}$ each non-empty independent k-subset covers exactly k independent (k-1)-subsets, we can write

$$H_n^{(h)} = \sum_{k=0}^{\lceil n/(h+1)
ceil} kp_{n,k}^{(h)} = \sum_{k=0}^{\lceil n/(h+1)
ceil} kinom{n-hk+h}{k} \; .$$

The *h*-Fibonacci sequence

h-Fibonacci sequence

For $h \ge 0$, we define the *h*-Fibonacci sequence $\mathcal{F}^{(h)} = \{F_n^{(h)}\}_{n\ge 1}$ whose elements are

$$F_n^{(h)} = egin{cases} 1 & ext{if} \ \ 1 \leq n \leq h+1\,, \ F_{n-1}^{(h)} + F_{n-h-1}^{(h)} & ext{if} \ \ n > h+1. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The *h*-Fibonacci sequence

h-Fibonacci sequence

For $h \ge 0$, we define the *h*-Fibonacci sequence $\mathcal{F}^{(h)} = \{F_n^{(h)}\}_{n\ge 1}$ whose elements are

$$F_n^{(h)} = egin{cases} 1 & ext{if} \ \ 1 \leq n \leq h+1 \ F_{n-1}^{(h)} + F_{n-h-1}^{(h)} & ext{if} \ \ n > h+1. \end{cases}$$

Assuming $p_j^{(h)}=1$ for j<0, we have that, for $i\geq 1,$ $F_i^{(h)}=p_{i-h-1}^{(h)}$

The *h*-Fibonacci sequence

h-Fibonacci sequence

For $h \ge 0$, we define the *h*-Fibonacci sequence $\mathcal{F}^{(h)} = \{F_n^{(h)}\}_{n\ge 1}$ whose elements are

$$F_n^{(h)} = egin{cases} 1 & ext{if} \ \ 1 \leq n \leq h+1 \ F_{n-1}^{(h)} + F_{n-h-1}^{(h)} & ext{if} \ \ n > h+1. \end{cases}$$

Assuming
$$p_j^{(h)}=1$$
 for $j<0,$ we have that, for $i\geq 1,$ $F_i^{(h)}=p_{i-h-1}^{(h)}$

We observe that

The *h*-Fibonacci sequence

h-Fibonacci sequence

For $h \ge 0$, we define the *h*-Fibonacci sequence $\mathcal{F}^{(h)} = \{F_n^{(h)}\}_{n\ge 1}$ whose elements are

$$F_n^{(h)} = egin{cases} 1 & ext{if} \ \ 1 \leq n \leq h+1 \ F_{n-1}^{(h)} + F_{n-h-1}^{(h)} & ext{if} \ \ n > h+1. \end{cases}$$

Assuming
$$p_j^{(h)}=1$$
 for $j<0,$ we have that, for $i\geq 1,$ $F_i^{(h)}=p_{i-h-1}^{(h)}$

We observe that

•
$$\mathcal{F}^{(0)} = 1, 2, 4, \dots, 2^n, \dots;$$

The *h*-Fibonacci sequence

h-Fibonacci sequence

For $h \ge 0$, we define the *h*-Fibonacci sequence $\mathcal{F}^{(h)} = \{F_n^{(h)}\}_{n\ge 1}$ whose elements are

$$F_n^{(h)} = egin{cases} 1 & ext{if} \ \ 1 \leq n \leq h+1 \ F_{n-1}^{(h)} + F_{n-h-1}^{(h)} & ext{if} \ \ n > h+1. \end{cases}$$

Assuming
$$p_j^{(h)}=1$$
 for $j<0,$ we have that, for $i\geq 1,$ $F_i^{(h)}=p_{i-h-1}^{(h)}$

We observe that

•
$$\mathcal{F}^{(0)} = 1, 2, 4, \dots, 2^n, \dots;$$

• $\mathcal{F}^{(1)}$ is the Fibonacci sequence;

くしく 山 ふ ふ か く 山 く 山 く し く し く し く し く

The *h*-Fibonacci sequence

h-Fibonacci sequence

For $h \ge 0$, we define the *h*-Fibonacci sequence $\mathcal{F}^{(h)} = \{F_n^{(h)}\}_{n\ge 1}$ whose elements are

$$F_n^{(h)} = egin{cases} 1 & ext{if} \ \ 1 \leq n \leq h+1 \ F_{n-1}^{(h)} + F_{n-h-1}^{(h)} & ext{if} \ \ n > h+1. \end{cases}$$

Assuming
$$p_j^{(h)}=1$$
 for $j<0,$ we have that, for $i\geq 1,$ $F_i^{(h)}=p_{i-h-1}^{(h)}$

We observe that

•
$$\mathcal{F}^{(0)} = 1, 2, 4, \dots, 2^n, \dots;$$

- $\mathcal{F}^{(1)}$ is the Fibonacci sequence;
- more generally, $\mathcal{F}^{(h)} = \underbrace{1, \ldots, 1}_{l}, p_0^{(h)}, p_1^{(h)}, p_2^{(h)}, \ldots$

Introduction	Evaluation of $p_n^{(h)}$	Evaluation of $H_n^{(h)}$	The case of cycles
Main result			

We use of the discrete convolution operation *, as follows.

$$\left(\mathcal{F}^{(h)}*\mathcal{F}^{(h)}
ight)(n)\doteq\sum_{i=1}^{n}F_{i}^{(h)}\cdot F_{n-i+1}^{(h)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Evaluation of $p_n^{(h)}$	Evaluation of $H_n^{(h)}$	The case of cycles
Main result			

We use of the discrete convolution operation *, as follows.

$$\left(\mathcal{F}^{(h)}*\mathcal{F}^{(h)}
ight)(n)\doteq\sum_{i=1}^{n}F_{i}^{(h)}\cdot F_{n-i+1}^{(h)}$$

Main result

For $n, h \ge 0$, the following holds.

$$H_n^{(h)} = \left(\mathcal{F}^{(h)} * \mathcal{F}^{(h)}
ight)(n)$$
 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof of main result — 1

Let $T_{k,i}^{(n,h)}$ be the number of independent k-subsets of $\mathbf{P}_n^{(h)}$ containing the vertex v_i .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of main result — 1

Let $T_{k,i}^{(n,h)}$ be the number of independent k-subsets of $\mathbf{P}_n^{(h)}$ containing the vertex v_i .

Lemma

For $n, h, k \ge 0$, and $1 \le i \le n$,

$$T_{k,i}^{(n,h)} = \sum_{0 \leq r+s=k-1} \, p_{i-h-1,r}^{(h)} \cdot p_{n-i-h,s}^{(h)} \, .$$

Proof of main result — 1

Let $T_{k,i}^{(n,h)}$ be the number of independent k-subsets of $\mathbf{P}_n^{(h)}$ containing the vertex v_i .

Lemma

For $n, h, k \ge 0$, and $1 \le i \le n$,

$$T_{k,i}^{(n,h)} = \sum_{0 \leq r+s=k-1} \, p_{i-h-1,r}^{(h)} \cdot p_{n-i-h,s}^{(h)} \, .$$

Lemma

For positive n,

$$H_n^{(h)} = \sum_{k=1}^{\lceil n/(h+1) \rceil} \sum_{i=1}^n \, T_{k,i}^{(n,h)} \, .$$

▲ロト ▲園ト ▲ヨト ▲ヨト 三百一のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of main result — 2

Sketch of the proof. Using

$$\sum_{k=1}^{\lceil n/(h+1)
ceil} T_{k,i}^{(n,h)} = p_{i-h-1}^{(h)} \cdot p_{n-h-i}^{(h)},$$

and the Lemmas,

Evaluation of $H_n^{(h)}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of main result — 2

Sketch of the proof. Using

$$\sum_{k=1}^{\lceil n/(h+1)
ceil} T_{k,i}^{(n,h)} = p_{i-h-1}^{(h)} \cdot p_{n-h-i}^{(h)},$$

and the Lemmas, we obtain

$$\begin{split} H_n^{(h)} &= \sum_{k=1}^{\lceil n/(h+1) \rceil} \sum_{i=1}^n \, T_{k,i}^{(n,h)} = \sum_{i=1}^n \sum_{k=1}^{\lceil n/(h+1) \rceil} \, T_{k,i}^{(n,h)} = \\ &= \sum_{i=1}^n \, p_{i-h-1}^{(h)} \cdot p_{n-h-i}^{(h)} = \sum_{i=1}^n \, F_i^{(h)} \cdot F_{n-i+1}^{(h)} \, . \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some values of $H_n^{(h)}$

The table below supplies a few values of $H_n^{(h)}$.

$H_n^{(h)}$	n = 0	1	2	3	4	5	6	7	8	9	10	11
$H_n^{(0)}$	0	1	4	12	32	80	192	448	1024	2304	5120	11264
$H_n^{(1)}$	0	1	2	5	10	20	38	71	130	235	420	744
$H_n^{(2)}$	0	1	2	3	6	11	18	30	50	81	130	208
$H_n^{(3)} \\ H_n^{(4)}$	0	1	2	3	4	7	12	19	28	42	64	97
$H_n^{(4)}$	0	1	2	3	4	5	8	13	20	29	40	56
$H_{n}^{(5)}$	0	1	2	3	4	5	6	9	14	21	30	41

Evaluation of $p_n^{(h)}$ Evaluation of $H_n^{(h)}$

The case of cycles

The independent subsets of powers of cycles

We denote by $q_{n,k}^{(h)}$ the number of independent k-subsets of $\mathbf{Q}_n^{(h)}.$ For $n,h,k\geq 0,$

$$q_{n,k}^{(h)} = rac{n}{k} inom{n-hk-1}{k-1}$$
 . $\left[p_{n,k}^{(h)} = inom{n-hk+h}{k}
ight]$

Evaluation of $p_n^{(h)}$ Evaluation of $H_n^{(h)}$

The case of cvcles

The independent subsets of powers of cycles

We denote by $q_{n,k}^{(h)}$ the number of independent k-subsets of $\mathbf{Q}_n^{(h)}$. For $n,h,k\geq 0$,

$$q_{n,k}^{(h)} = rac{n}{k} inom{n-hk-1}{k-1}$$
 . $\left[p_{n,k}^{(h)} = inom{n-hk+h}{k}
ight]$

For $n, h \ge 0$, we denote by $q_n^{(h)}$ the number of all independent subsets of $\mathbf{Q}_n^{(h)}$: $q_n^{(h)} = \sum_{k=0}^{\lfloor n/(h+1) \rfloor} q_{n,k}^{(h)}$.

Evaluation of $p_n^{(h)}$ Evaluation of $H_n^{(h)}$

The independent subsets of powers of cycles

We denote by $q_{n,k}^{(h)}$ the number of independent k-subsets of $\mathbf{Q}_n^{(h)}$. For $n,h,k\geq 0$,

$$q_{n,k}^{(h)} = rac{n}{k} inom{n-hk-1}{k-1} \; . \qquad \left[p_{n,k}^{(h)} = inom{n-hk+h}{k}
ight]$$

For $n, h \ge 0$, we denote by $q_n^{(h)}$ the number of all independent subsets of $\mathbf{Q}_n^{(h)}$: $q_n^{(h)} = \sum_{k=0}^{\lfloor n/(h+1) \rfloor} q_{n,k}^{(h)}$. We have,

$$egin{aligned} q_n^{(h)} = egin{cases} n+1 & ext{if} & n \leq 2h+1\,, \ q_{n-1}^{(h)} + q_{n-h-1}^{(h)} & ext{if} & n > 2h+1. \ \end{bmatrix} \ \begin{bmatrix} p_n^{(h)} = egin{cases} n+1 & ext{if} & n \leq h+1\,, \ p_{n-1}^{(h)} + p_{n-h-1}^{(h)} & ext{if} & n > h+1\,. \end{bmatrix} \end{aligned}$$

・ロト ・ 日 ・ モー・ モー・ うへぐ

The poset of independent subsets of powers of cycles

Let $\mathbf{L}_n^{(h)}$ be the Hasse diagram of the poset of independent subsets of $\mathbf{Q}_n^{(h)}$ ordered by inclusion, and $L_n^{(h)}$ the number of its edges.

The poset of independent subsets of powers of cycles

Let $\mathbf{L}_n^{(h)}$ be the Hasse diagram of the poset of independent subsets of $\mathbf{Q}_n^{(h)}$ ordered by inclusion, and $L_n^{(h)}$ the number of its edges.

We immediately provide a formula for $L_n^{(h)}$:

$$\begin{split} L_n^{(h)} &= \sum_{k=0}^{\lfloor n/(h+1) \rfloor} kq_{n,k}^{(h)} = n \sum_{k=0}^{\lfloor n/(h+1) \rfloor} \binom{n-hk-1}{k-1} \\ & \left[H_n^{(h)} = \sum_{k=0}^{\lceil n/(h+1) \rceil} kp_{n,k}^{(h)} = \sum_{k=0}^{\lceil n/(h+1) \rceil} k\binom{n-hk+h}{k} \right] \end{split}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

The poset of independent subsets of powers of cycles

Let $\mathbf{L}_n^{(h)}$ be the Hasse diagram of the poset of independent subsets of $\mathbf{Q}_n^{(h)}$ ordered by inclusion, and $L_n^{(h)}$ the number of its edges.

We immediately provide a formula for $L_n^{(h)}$:

$$\begin{split} L_n^{(h)} &= \sum_{k=0}^{\lfloor n/(h+1) \rfloor} kq_{n,k}^{(h)} = n \sum_{k=0}^{\lfloor n/(h+1) \rfloor} \binom{n-hk-1}{k-1} \\ & \left[H_n^{(h)} = \sum_{k=0}^{\lceil n/(h+1) \rceil} kp_{n,k}^{(h)} = \sum_{k=0}^{\lceil n/(h+1) \rceil} k\binom{n-hk+h}{k} \right] \end{split}$$

The main result has no analog in the case of cycles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thank you for your attention.