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h-power of a paths and cycles — Definition

For a graph G we denote by V(G) the set of its vertices, and
by E(G) the set of its edges.

h-power of a paths and cycles
For n,h > 0,
(i) the h-power of a path, denoted by P Visa graph with n

vertices vy, ¥a,..., U, such that, for 1 < 1,7 <n,
(vi,vj) € E(P (h)) if and only if |j — 1| < h;
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h-power of a paths and cycles — Definition

For a graph G we denote by V(G) the set of its vertices, and
by E(G) the set of its edges.

h-power of a paths and cycles
For n,h > 0,

(i) the h-power of a path, denoted by P Visa graph with n
vertices vy, ¥a,..., U, such that, for 1 < 1,7 <n,
(vi,vj) € E(P (h)) if and only if |j—'L|<h

(ii) the h-power of a cycle, denoted by Qn is a graph with n
vertices vi, V2, ..., Uy such that, for 1 <1,7 < n,
(vi, v;) € E(QY) if and only if |j — 5| < h or
l7 —4>n—h.
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h-power of a paths and cycles — Example

P;O) is the graph made of n isolated nodes, PLI) is the path with n vertices ...



)

Introduction Evaluation of p.,[Ln Evaluation of H"“lJ The case of cycles

h-power of a paths and cycles — Example
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P;O) is the graph made of n isolated nodes, P, ' is the path with n vertices ...
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..QELOJ is the graph made of n isolated nodes, and Q;l) is the cycle with n

vertices.
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Independent subsets

Independent subset

An independent subset S of a graph G is a subset of V(G) not
containing adjacent vertices.
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Independent subsets

Independent subset

An independent subset S of a graph G is a subset of V(G) not
containing adjacent vertices.

In the first part of this presentation we evaluate pﬁlh), i.e. the
number of independent subsets of P;h), and H,(lh), i.e. the
number of edges of the Hasse diagram of the poset of
independent subsets of Pslh) ordered by inclusion.
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Independent subsets

Independent subset

An independent subset S of a graph G is a subset of V(G) not
containing adjacent vertices.

In the first part of this presentation we evaluate pﬁlh), i.e. the
number of independent subsets of P;h), and H,(lh), i.e. the
number of edges of the Hasse diagram of the poset of
independent subsets of Pﬁf” ordered by inclusion.

In the second part we briefly consider the case of cycles.
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Connections

Our main result is that, for n, A > 0, the sequence Hr(lh) is
obtained by convolving the sequence
..., 1,péh),p£h], . ,p{”fh*l) with itself.

h
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Connections

Our main result is that, for n, A > 0, the sequence Hr(lh) is
obtained by convolving the sequence
..., 1,péh),p£h], . ,p{”fh*l) with itself.
h
On one hand, we generalize the known formula n2"! for the

number of edges of the Boolean algebra with n atoms.
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Connections

Our main result is that, for n, A > 0, the sequence Hr(lh) is
obtained by convolving the sequence
..., 1,péh),p£h], . ,p{”fh*l) with itself.

h
On one hand, we generalize the known formula n2"! for the
number of edges of the Boolean algebra with n atoms.
Indeed, we generalize the fact that n2" ! is obtained by the

convolution of the sequence {2"},>o.
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Connections

Our main result is that, for n, A > 0, the sequence Hr(lh) is
obtained by convolving the sequence
..., 1,péh),p£h], . ,p{”fh*l) with itself.

h
On one hand, we generalize the known formula n2"! for the
number of edges of the Boolean algebra with n atoms.
Indeed, we generalize the fact that n2" ! is obtained by the

convolution of the sequence {2"},>o.

From a different perspective, this work could be seen as another
generalization of the convolved Fibonacci sequence.
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Evaluation of pf,bh,)c

For n,h,k > 0, we denote by péhll the number of independent

k-subsets of PL’”. For convenience, we assume that pih,)c = péhk),

whenever n < 0.
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Evaluation of pf,bh,)c

For n,h,k > 0, we denote by péhll the number of independent
k-subsets of PEP. For convenience, we assume that pih,)c = péhk),

whenever n < 0.

Lemma
For n,h,k > 0,
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Evaluation of pih,)c

Evaluation of Hn“1J The case of cycles

For n,h,k > 0, we denote by pilh,l the number of independent

(R) (R)

k-subsets of P;’”. For convenience, we assume that p,, . = py 4,

whenever n < 0.

Lemma
For n,h,k > 0,

Sketch of the proof. Establish a bijection between
independent k-subset of Pglh) and k-subsets of a set with
(n — hk + h) elements.
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Evaluation of pih,)c

For n,h,k > 0, we denote by pilh,l the number of independent
k-subsets of P;’”. For convenience, we assume that pfih,)c = péhk),

whenever n < 0.

Lemma
For n,h,k > 0,

Sketch of the proof. Establish a bijection between
independent k-subset of Pglh) and k-subsets of a set with
(n — hk + h) elements.

(h) ) (h—1)

The coefficients p,, , also enjoy the property: pffk = Dp b1k
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Evaluation of p,(nbh)

For n,h > 0 we denote by pn ) the number of all independent
subsets of P . We have:

[n/(h+1)] , (h)
Zk>0 nk k=0 Pni-
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Evaluation of p,(nbh)

For n,h > 0 we denote by pn ) the number of all independent
subsets of P . We have:

[n/(h+1)] , (h)
Zk>0 nk k=0 Pni-

Lemma
For n,h >0,

(h) n+1 if TLSh-i-l,
Pn =

p,(lh,)l +p,(lh_)h_1 if n>h+1.
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Evaluation of p,(nbh)

For n,h > 0 We denote by pn ) the number of all independent
subsets of P . We have:

[n/(h+1)] (R)
Zk>0 nk kno Pni-
Lemma
For n,h >0,
(R) n+1 if n<h+1,
Pn = .
" p;h,)l +pflh_)h_1 if n>h+1.

Sketch of the proof. Let 7 be the set of all independent
subsets of PEf‘), let 7,, be the set of the independent subsets of
P that contain v, and let Zoy = Z\ Zip. ...
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The poset of independent subsets of power of paths

Let H,(ih) be the Hasse diagram of the poset of independent
subsets of P;’” ordered by inclusion, and Hﬁh] the number of
the edges of the diagram.
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The poset of independent subsets of power of paths

Let H,(ih) be the Hasse diagram of the poset of independent
subsets of P;’” ordered by inclusion, and H}lh) the number of
the edges of the diagram.

Noting that in H%h) each non-empty independent k-subset
covers exactly k independent (k — 1)-subsets, we can write

[n/(h+1)] [n/(h+1)]

—hk+h
A T T W G §
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The h-Fibonacci sequence

h-Fibonacci sequence

For h > 0, we define the h-Fibonacci sequence F#) = {Fﬁh)}nzl
whose elements are

(h) 1 1f1§n§h+1,
FM +FP i n>h4L

n
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The h-Fibonacci sequence

h-Fibonacci sequence

For h > 0, we define the h-Fibonacci sequence F#) = {Fflh)}nzl
whose elements are

(h) 1 1f1§n§h+1,
Foo=9_0m | o .
FM L pM i s b1

Assuming p](-h) =1 for 7 < 0, we have that, for 2 > 1,

(h) (h)
Fo =0, 4
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The h-Fibonacci sequence

h-Fibonacci sequence

For h > 0, we define the h-Fibonacci sequence F#) = {Fflh)}nzl
whose elements are

(h) 1 1f1§n§h+1,
L R (S I
FoO+F. ", o if n>h+1
Assuming p](-h) =1 for 7 < 0, we have that, for 2 > 1,
(h) (h)
B =Piha

We observe that
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The h-Fibonacci sequence

h-Fibonacci sequence

For h > 0, we define the h-Fibonacci sequence F#) = {Fflh)}nzl
whose elements are

(h) 1 1f1§n§h+1,
L R (S I
FoO+F. ", o if n>h+1
Assuming p](-h) =1 for 7 < 0, we have that, for 2 > 1,
(h) (h)
B =Piha

We observe that
o FIO =124 ...,2" ...;
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The h-Fibonacci sequence

h-Fibonacci sequence

For h > 0, we define the h-Fibonacci sequence F#) = {Fflh)}nzl
whose elements are

(h) 1 1f1§n§h+1,
L R (S I
FoO+F. ", o if n>h+1
Assuming p](-h) =1 for 7 < 0, we have that, for 2 > 1,
(h) (h)
B =Piha

We observe that
o FIO =124 ...,2" ...;

o F is the Fibonacci sequence;
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The h-Fibonacci sequence

h-Fibonacci sequence

For h > 0, we define the h-Fibonacci sequence F#) = {Fflh)}nzl
whose elements are

(h) 1 1f1§n§h+1,
L R (S I
FoO+F. ", o if n>h+1
Assuming p](-h) =1 for 7 < 0, we have that, for 2 > 1,
(h) (h)
B =Piha

We observe that
o FIO =124 ...,2" ...;
o F is the Fibonacci sequence;
e more generally, F(?) =1 1, M) plh) plh)
) Py Yy HF1 Y2 oy
3



Main result

We use of the discrete convolution operation x, as follows

n
(J-"(h) . J-‘““) (my=Y rM.FM |
1=1

DA
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Main result

We use of the discrete convolution operation *, as follows.

n
(FW e F) tn = 3R B2
1=1

Main result
For n,h > 0, the following holds.

HP = (.F(h) x f“”) (n).
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Proof of main result — 1

Let T,ET;‘M be the number of independent k-subsets of P(nh)
containing the vertex v;.
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Proof of main result — 1

Let T,ET;‘M be the number of independent k-subsets of P(nh)
containing the vertex v;.

Lemma
For n,h,k >0, and 1 <1 < n,

(n,h) (h) (h)
kai = Z Pih1r Pninse
0<r+s=k—1
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Proof of main result — 1

Let T ) be the number of independent k-subsets of P
conta1n1ng the vertex v;.

Lemma
For n,h,k >0, and 1 <1 < n,
(n,h) (h) (R)
kai = Z Pih1r Pninse
0<r+4s=k—1
Lemma

For positive n,

[n/(h+1)] n

P Z Z T
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Proof of main result — 2

Sketch of the proof. Using

[n/(h+1)] p(nh) _, (R) (h)
k=1 Ty =Pih 1 Pupis

and the Lemmas,
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Proof of main result — 2

Sketch of the proof. Using

[n/(h+1)] p(nh) _, (R) (h)
k=1 Ty =Pih 1 Pupis

and the Lemmas, we obtain

(h (h+1 (h+1)] h
Y =y 1M ”z:;l zzlzf”/ T =

(h) (
:Zzlzlpi—h—l n h 1 Zz lF n 2+1°
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Some values of H,Eh)

The table below supplies a few values of H,gh).

B [ n=0 1 2 3 a4 s 6 7 8 9 10 11
o 0 1 4 12 32 80 102 448 1024 2304 5120 11264
j2 AL o 1 2 5 10 20 38 71 130 235 420 744
j2AS) o 1 2 3 6 11 18 30 50 81 130 208
o o 1 2 3 4 7 12 19 28 42 64 o7
J2 ARy 0o 1 =2 3 4 5 8 13 20 29 40 56
) 0o 1 2 3 4 5 6 9 14 21 30 41
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The independent subsets of powers of cycles

We denote by qéh,z the number of independent k-subsets of
Q\Y. For n,h,k > 0,

gl =2 (Y [ =)
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The independent subsets of powers of cycles

We denote by qéh,i the number of independent k-subsets of
Q\Y. For n,h,k > 0,

gl =2 (Y [ =)

For n,h > 0, we denote by q,(lh) the number of all independent

subsets of Q%h]: %(zh) = JEZ/()(hH)J qr(zhli
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The independent subsets of powers of cycles

We denote by qéh,i the number of independent k-subsets of
Q\Y. For n,h,k > 0,

gl =2 (Y [ =)

For n,h > 0, we denote by q,(lh) the number of all independent

subsets of Q\": ¥ = ,EZ/O(H”J qr(lh,i We have,
(h) n+1 if n<2h+41,

qn = .
" q,(lh,)l + qflh_)h_l if n>2h+1.

= (

(h) TL+1 lf n§h+1,
Pn .
"’ p,@1+pnh}h1 if n>h+1.
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The poset of independent subsets of powers of cycles

Let LEJ” be the Hasse diagram of the poset of independent

subsets of leh) ordered by inclusion, and Lglh) the number of its

edges.
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The poset of independent subsets of powers of cycles

Let L ) be the Hasse diagram of the poset of independent
subsets of Qn ordered by inclusion, and LSL ) the number of its

edges.

We immediately provide a formula for L(h)

(h+1) (h+1)] _hk—
ng U"/ + Jknk_nzln/ + (nkhkl 1)

(R) (n/h+1} [n/(h+1)] n—hk+h
(" = kplh) = S (v
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The poset of independent subsets of powers of cycles

Let L ) be the Hasse diagram of the poset of independent
subsets of Qn ordered by inclusion, and LSL ) the number of its

edges.

We immediately provide a formula for L(h)

ng U"/ (h+1)] k n k —n ZL"/ (h+1)] (nfkhklfl)
{H(h (n/ (h+1)] k k Ln/o (h+1)] k(n hk+h)}
n - n - k

The main result has no analog in the case of cycles.



Thank you for your attention.

o F = = E DA
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