The Euler Characteristic of a formula in many-valued logic

Pietro Codara Ottavio M. D’Antona Vincenzo Marra

Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano

Presenting author: Pietro Codara

Combinatorics 2010, Verbania, 2 July 2010
Outline

1. The lattice-theoretic Euler Characteristic
2. Euler Characteristic of a formula in classical propositional logic
3. Euler Characteristic of a formula in Gödel logic
4. Further research
Let L be a (bounded) distributive lattice whose bottom element is denoted \bot. A function $\nu: L \to \mathbb{R}$ is a **valuation** if it satisfies $\nu(\bot) = 0$, and

$$\nu(x) + \nu(y) = \nu(x \lor y) + \nu(x \land y)$$

for all $x, y \in L$.

Lemma

Every valuation on a finite distributive lattice L is uniquely determined by its values at the join-irreducibles of L. Recall that $x \in L$ is join-irreducible if it is not the bottom of L, and $x = y \lor z$ implies $x = y$ or $x = z$ for all $y, z \in L$.

Valuation

The Euler-Klee-Rota lattice-theoretic characteristic
The Euler-Klee-Rota lattice-theoretic characteristic

Valuation

Let L be a (bounded) distributive lattice whose bottom element is denoted \bot. A function $\nu: L \to \mathbb{R}$ is a **valuation** if it satisfies $\nu(\bot) = 0$, and

$$\nu(x) + \nu(y) = \nu(x \lor y) + \nu(x \land y)$$

for all $x, y \in L$.

Lemma

Every valuation on a finite distributive lattice L is uniquely determined by its values at the join-irreducibles of $L.

Recall that $x \in L$ is **join-irreducible** if it is not the bottom of L, and $x = y \lor z$ implies $x = y$ or $x = z$ for all $y, z \in L$.
The Euler-Klee-Rota lattice-theoretic characteristic, official definition:

(V. Klee 1963; G.-C. Rota 1974)

Euler characteristic

The Euler characteristic of a finite distributive lattice L is the unique valuation $\chi: L \rightarrow \mathbb{R}$ such that $\chi(x) = 1$ for any join-irreducible element $x \in L$.
Euler characteristic of a classical formula

For an integer \(n \geq 0 \), let \(\text{FORM}_n \) denote the set of formulæ in classical (propositional) logic over the atomic propositions \(X_1, \ldots, X_n \) and the logical constant \(\bot \) (\textit{falsum}).
Euler characteristic of a classical formula

- For an integer $n \geq 0$, let FORM_n denote the set of formulæ in classical (propositional) logic over the atomic propositions X_1, \ldots, X_n and the logical constant \bot (extit{falsum}).

- **Question**: Is there a sensible notion of Euler characteristic for a formula $\varphi \in \text{FORM}$?
Euler characteristic of a classical formula

- For an integer $n \geq 0$, let FORM_n denote the set of formulæ in classical (propositional) logic over the atomic propositions X_1, \ldots, X_n and the logical constant \bot (falsum).

- **Question:** Is there a sensible notion of *Euler characteristic* for a formula $\phi \in \text{FORM}$?

- Writing \equiv for the relation of logical equivalence, the quotient set FORM_n/\equiv is naturally a Boolean algebra.
Euler characteristic of a classical formula

- For an integer $n \geq 0$, let FORM_n denote the set of formulae in classical (propositional) logic over the atomic propositions X_1, \ldots, X_n and the logical constant \bot (falsum).

- **Question:** Is there a sensible notion of *Euler characteristic* for a formula $\varphi \in \text{FORM}$?

- Writing \equiv for the relation of logical equivalence, the quotient set FORM_n/ \equiv is naturally a Boolean algebra.

- So we can consider valuations on FORM_n/ \equiv. In particular, let χ be the Euler(-Klee-Rota) characteristic of FORM_n/ \equiv.
Euler characteristic of a classical formula

- For an integer $n \geq 0$, let FORM_n denote the set of formulæ in classical (propositional) logic over the atomic propositions X_1, \ldots, X_n and the logical constant \bot (falsum).

- **Question**: Is there a sensible notion of Euler characteristic for a formula $\varphi \in \text{FORM}$?

- Writing \equiv for the relation of logical equivalence, the quotient set FORM_n/\equiv is naturally a Boolean algebra.

- So we can consider valuations on FORM_n/\equiv. In particular, let χ be the Euler(-Klee-Rota) characteristic of FORM_n/\equiv.

- Then we say that the Euler characteristic of φ is $\chi([\varphi]_\equiv)$.
Euler characteristic of Boolean algebras

- In finite Boolean algebras, join-irreducible = atom.
Euler characteristic of Boolean algebras

- In finite Boolean algebras, join-irreducible=atom.
- So if B is a finite Boolean algebra, and $x \in B$ is the join of n atoms, we have $\chi(x) = n$ by the valuation property. (The characteristic is additive over disjoint elements.)
In finite Boolean algebras, join-irreducible=atom.

So if B is a finite Boolean algebra, and $x \in B$ is the join of n atoms, we have $\chi(x) = n$ by the valuation property. (The characteristic is additive over disjoint elements.)

In other words, if B is canonically represented as the Boolean algebra of all subsets of a set (=the set of atoms of B), then $\chi(S) =$cardinality of S for all $S \in B$.
Euler characteristic of Boolean algebras

- In finite Boolean algebras, \textit{join-irreducible=atom}.
- So if \(B \) is a finite Boolean algebra, and \(x \in B \) is the join of \(n \) atoms, we have \(\chi(x) = n \) by the valuation property. (The characteristic is additive over disjoint elements.)
- In other words, if \(B \) is canonically represented as the Boolean algebra of all subsets of a set (\(= \)the set of atoms of \(B \)), then \(\chi(S) = \text{cardinality of } S \) for all \(S \in B \).
- Since atoms of \(\text{FORM}_n/\equiv \) are in natural bijections with assignments of truth values \(\mu: \{X_1, \ldots, X_n\} \to \{0, 1\} \), we have:
Euler characteristic of Boolean algebras

- In finite Boolean algebras, \(\text{join-irreducible} = \text{atom} \).
- So if \(B \) is a finite Boolean algebra, and \(x \in B \) is the join of \(n \) atoms, we have \(\chi(x) = n \) by the valuation property. (The characteristic is additive over disjoint elements.)
- In other words, if \(B \) is canonically represented as the Boolean algebra of all subsets of a set (\(= \)the set of atoms of \(B \)), then \(\chi(S) = \text{cardinality of } S \) for all \(S \in B \).
- Since atoms of \(\text{FORM}_n / \equiv \) are in natural bijections with assignments of truth values \(\mu: \{X_1, \ldots, X_n\} \to \{0, 1\} \), we have:

\[\chi([\varphi]_{\equiv}) \text{ is the number of assignments that satisfy } \varphi. \]
Gödel logic

Gödel logic G_∞ can be semantically defined as a many-valued logic.
Gödel logic

Gödel logic \mathcal{G}_∞ can be semantically defined as a many-valued logic. Let FORM be the set of formulæ over propositional variables X_1, X_2, \ldots in the language $\land, \lor, \to, \neg, \bot, \top$.
Gödel logic

Gödel logic G_{∞} can be semantically defined as a many-valued logic. Let FORM be the set of formulæ over propositional variables X_1, X_2, \ldots in the language $\land, \lor, \rightarrow, \neg, \bot, \top$.

An assignment is a function $\mu: \text{FORM} \to [0, 1] \subseteq \mathbb{R}$ with values in the real unit interval such that, for any two $\alpha, \beta \in \text{FORM},$

$$\mu(\alpha \land \beta) = \min\{\mu(\alpha), \mu(\beta)\}$$

$$\mu(\alpha \lor \beta) = \max\{\mu(\alpha), \mu(\beta)\}$$

$$\mu(\alpha \rightarrow \beta) = \begin{cases} 1 & \text{if } \mu(\alpha) \leq \mu(\beta) \\ \mu(\beta) & \text{otherwise} \end{cases}$$

and $\mu(\neg \alpha) = \mu(\alpha \rightarrow \bot)$, $\mu(\bot) = 0$, $\mu(\top) = 1$.
Gödel logic

Gödel logic \mathcal{G}_∞ can be semantically defined as a many-valued logic. Let FORM be the set of formulæ over propositional variables X_1, X_2, \ldots in the language $\land, \lor, \to, \neg, \bot, \top$.

An assignment is a function $\mu: \text{FORM} \to [0, 1] \subseteq \mathbb{R}$ with values in the real unit interval such that, for any two $\alpha, \beta \in \text{FORM}$,

\[
\begin{align*}
\mu(\alpha \land \beta) &= \min\{\mu(\alpha), \mu(\beta)\} \\
\mu(\alpha \lor \beta) &= \max\{\mu(\alpha), \mu(\beta)\} \\
\mu(\alpha \to \beta) &= \begin{cases} 1 & \text{if } \mu(\alpha) \leq \mu(\beta) \\ \mu(\beta) & \text{otherwise} \end{cases}
\end{align*}

and $\mu(\neg \alpha) = \mu(\alpha \to \bot)$, $\mu(\bot) = 0$, $\mu(\top) = 1$.

A tautology is a formula α such that $\mu(\alpha) = 1$ for every assignment μ.
Gödel algebras

Gödel algebras are Heyting algebras (=Tarski-Lindenbaum algebras of intuitionistic propositional calculus) satisfying the prelinearity axiom

$$(x \rightarrow y) \lor (y \rightarrow x) = \top.$$
Gödel algebras

Gödel algebras are Heyting algebras (＝Tarski-Lindenbaum algebras of intuitionistic propositional calculus) satisfying the prelinearity axiom

\[(x \to y) \lor (y \to x) = \top.\]

They provide the equivalent algebraic semantics of Gödel logic.
Gödel algebras are Heyting algebras (=Tarski-Lindenbaum algebras of intuitionistic propositional calculus) satisfying the prelinearity axiom

$$(x \to y) \vee (y \to x) = \top.$$

They provide the equivalent algebraic semantics of Gödel logic. For an integer $n \geq 0$, let us write G_n for the Tarski-Lindenbaum algebra of Gödel logic over the variables X_1, \ldots, X_n, that is, the algebra $\text{ FORM}_n / \equiv$, where \equiv is the logical equivalence between formulæ.
We shall use Gödel \((k + 1)\)-valued logic, written \(G_{k+1}\), for an integer \(k \geq 1\).
Gödel \((k + 1)\)-valued logic

We shall use Gödel \((k + 1)\)-valued logic, written \(G_{k+1}\), for an integer \(k \geq 1\).

\(G_{k+1}\) is obtained from \(G_{\infty}\), Gödel (infinite-valued) logic recalled above, by restricting assignments to those taking values in the set

\[V_{k+1} = \{0 = \frac{0}{k}, \frac{1}{k}, \ldots, \frac{k-1}{k}, \frac{k}{k} = 1\} \subseteq [0, 1],\]

that is, to \((k + 1)\)-valued assignments.
Euler characteristic of a formula Gödel logic

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice \mathcal{G}_n.
The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_{\equiv})$, where χ is the Euler characteristic of the finite distributive lattice G_n.

Does this notion have any logical content?
Euler characteristic of a formula in Gödel logic

The Euler characteristic of a formula \(\varphi \in \text{FORM}_n \), written \(\chi(\varphi) \), is the number \(\chi([\varphi]_{\equiv}) \), where \(\chi \) is the Euler characteristic of the finite distributive lattice \(G_n \).

Does this notion have any logical content?

Theorem

Fix an integer \(n \geq 1 \). For any formula \(\varphi \in \text{FORM}_n \), the Euler characteristic \(\chi(\varphi) \) equals the number of Boolean assignments \(\mu : \text{FORM}_n \to [0,1] \) such that \(\mu(\varphi) = 1 \).
Euler characteristic of a formula in Gödel logic

The Euler characteristic of a formula $\varphi \in \text{FORM}_n$, written $\chi(\varphi)$, is the number $\chi([\varphi]_\equiv)$, where χ is the Euler characteristic of the finite distributive lattice G_n.

Does this notion have any logical content?

Theorem

Fix an integer $n \geq 1$. For any formula $\varphi \in \text{FORM}_n$, the Euler characteristic $\chi(\varphi)$ equals the number of Boolean assignments $\mu: \text{FORM}_n \to [0, 1]$ such that $\mu(\varphi) = 1$.

In the sense given by this result, the characteristic of a formula as defined above is a classical notion – it will not distinguish, for instance, classical from non-classical tautologies.
Generalised Euler characteristic of a formula in Gödel logic

For a join-irreducible $g \in \mathcal{G}_n$, say g has height $h(g)$ if the (unique) chain of join-irreducibles below g in \mathcal{G}_n has cardinality $h(g)$.
Generalised Euler characteristic of a formula in Gödel logic

For a join-irreducible $g \in \mathcal{G}_n$, say g has height $h(g)$ if the (unique) chain of join-irreducibles below g in \mathcal{G}_n has cardinality $h(g)$.

Generalised Euler characteristic

Fix integers $n, k \geq 1$. We write $\chi_k : \mathcal{G}_n \rightarrow \mathbb{R}$ for the unique valuation on \mathcal{G}_n that satisfies

$$\chi_k(g) = \min \{ h(g), k \}$$

for each join-irreducible element $g \in \mathcal{G}_n$. Further, if $\varphi \in \text{FORM}_n$, we define $\chi_k(\varphi) = \chi_k([\varphi]_\equiv)$.

It turns out that χ_k is a “k-valued characteristic”, as we proceed to show.
Our next aim is to relate χ_k with (not necessarily Boolean) $[0, 1]$-valued assignments. In general, even if $n = 1$ and the language boils down to $\{X_1\}$, there are uncountably many assignments $\mu: \{X_1\} \rightarrow [0, 1]$. However, in Gödel logic this fact is quite misleading, and there is the following important reduction to finiteness.
Our next aim is to relate χ_k with (not necessarily Boolean) $[0, 1]$-valued assignments. In general, even if $n = 1$ and the language boils down to $\{X_1\}$, there are uncountably many assignments $\mu: \{X_1\} \rightarrow [0, 1]$. However, in Gödel logic this fact is quite misleading, and there is the following important reduction to finiteness.

n-equivalence

Fix integers $n, k \geq 1$. We say that two $(k + 1)$-valued assignments μ and ν are *equivalent over the first n variables*, or just *n-equivalent*, if and only if for all formulæ $\varphi(X_1, \ldots, X_n)$ of G_{k+1}, $\mu(\varphi) = 1$ if and only if $\nu(\varphi) = 1$.

The same definition can be given, *mutatis mutandis*, for G_∞.
Reduction to finitely many possible worlds

In G_∞, there are only finitely many equivalence classes of $[0, 1]$-valued assignments to n variables.
Reduction to finitely many possible worlds

In \mathcal{G}_∞, there are only finitely many equivalence classes of $[0, 1]$-valued assignments to n variables.

How many, exactly?
Reduction to finitely many possible worlds

In G_∞, there are only finitely many equivalence classes of $[0, 1]$-valued assignments to n variables.

How many, exactly?

This many: $P(n, n + 1)$,
Reduction to finitely many possible worlds

In \mathcal{G}_∞, there are only finitely many equivalence classes of $[0, 1]$-valued assignments to n variables.

How many, exactly?

This many: $P(n, n + 1)$,

where $P(n, k) = \sum_{i=1}^{k} \sum_{j=0}^{n} \binom{n}{j} T(j, i)$,
In G_∞, there are only finitely many equivalence classes of $[0, 1]$-valued assignments to n variables.

How many, exactly?

This many: $P(n, n + 1)$, where

$$P(n, k) = \sum_{i=1}^{k} \sum_{j=0}^{n} \binom{n}{j} T(j, i),$$

and

$$T(n, k) = \begin{cases}
1 & \text{if } k = 1, \\
0 & \text{if } k > n + 1, \\
\sum_{i=1}^{n} \binom{n}{i} T(n - i, k - 1) & \text{otherwise}.
\end{cases}$$
The number $P(n, k)$ of distinct equivalence classes of $(k + 1)$-valued assignments over n variables.
Main result

Theorem

Fix integers \(n, k \geq 1 \), and a formula \(\varphi \in \text{FORM}_n \).

\[\chi_k(\varphi) \] equals the number of \((k + 1)\)-valued assignments \(\mu: \text{FORM}_n \rightarrow [0, 1] \) such that \(\mu(\varphi) = 1 \), up to \(n \)-equivalence.
Main result

Theorem

Fix integers $n, k \geq 1$, and a formula $\varphi \in \text{FORM}_n$.

1. $\chi_k(\varphi)$ equals the number of $(k + 1)$-valued assignments $\mu: \text{FORM}_n \to [0, 1]$ such that $\mu(\varphi) = 1$, up to n-equivalence.

2. φ is a tautology in \mathbb{G}_{k+1} if and only if $\chi_k(\varphi) = P(n, k)$.
Main result

Theorem

Fix integers $n, k \geq 1$, and a formula $\varphi \in \text{FORM}_n$.

1. $\chi_k(\varphi)$ equals the number of $(k + 1)$-valued assignments $\mu: \text{FORM}_n \to [0, 1]$ such that $\mu(\varphi) = 1$, up to n-equivalence.

2. φ is a tautology in G_{k+1} if and only if $\chi_k(\varphi) = P(n, k)$.

3. φ is a tautology in G_{∞} if and only if it is a tautology in G_{n+2} if and only if $\chi_{n+1}(\varphi) = P(n, n + 1)$.
Example

The Gödel algebra G_1, and the values of $\chi = \chi_1 : G_1 \to \mathbb{R}$ and $\chi_2 : G_1 \to \mathbb{R}$.
Further research

- Study the logical content of the Euler Characteristic for Łukasiewicz logic, and other many-valued logics.

- Find an appropriate version of the Euler characteristic for Łukasiewicz logic, and other many-valued logics.

- More generally: Develop the general theory of valuations over Gödel and MV-algebras.
Thank you for your attention.