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INTRODUCTION MULTISETS AND MORPHISMS CONCLUSION

From Łukasiewicz logic to multisets

• FRAMEWORK: combinatorial studies of objects which are
the duals (in the categorical sense) of algebraic
counterparts of many-valued logics.

• LOGIC: Łukasiewicz logic, a many-valued generalization of
Boolean logic.

• CATEGORY: the category of finite MV-algebras (the
algebraic counterpart of Łukasiewicz logic).

• DUAL CATEGORY: multisets with particular morphisms.
• AIM OF THIS TALK: to present a generalization of

xn =
n∑

k=0

{
n
k

}
(x)k

to our multisets.
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The category Cfin

• OBJECTS: Multisets, i.e. functions α : A→ N, with A a
finite set (the underlying set of α).

An example of multiset is α = {a2
1,a

1
2,a

4
3}.

We associate to each multiset a partition of an integer
determined by the multiplicities of the elements of the
multiset. For instance, we associate to α the partition
ν = 〈1,2,4〉 and we say that α is a ν-set.

• MORPHISMS: A morphism f : α→ γ, with α : A→ N and
γ : C → N, is a function f : A→ C such that, for all a ∈ A,

γ ◦ f (a) | α(a) ,

where s | t stands for “s divides t”.
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Injections and surjections

Let α : A→ N, γ : C → N be multisets. Let f : α→ γ be a
morphism of multisets.

1. We call f weakly injective iff f : A→ C is injective.

2. We call f weakly surjective iff f : A→ C is surjective.

3. We call f strongly injective iff f : A→ C is injective, and

γ ◦ f = α .

4. We call f strongly surjective iff f : A→ C is surjective, and
for all c ∈ C

γ(c) = gcd {α(a) | f (a) = c} .
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Injections, an example

Weak injections.

Strong injections.
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Factorization systems in Cfin

• In the category of sets and functions, every function
factorizes uniquely as a surjection followed by an injection.

• In our category of multisets, each morphism has a unique
weakly surjective-strongly injective factorization, and a
unique strongly surjective-weakly injective factorization.

• Cfin has no other factorization systems besides the two
above.
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Partitions of a multiset

• A weak partition of α is a multiset π whose underlying
elements β1, β2, ..., βk are multisets satisfying the following
conditions.

1. If Bi = Domβi , i ∈ {1, . . . , k}, then {B1, . . . ,Bk} is a
partition of A into k blocks.

2. For every i ∈ {1, . . . , k}, π(βi) | gcd {α(a) | a ∈ Bi}, and
βi(a) = α(a) for all a ∈ Bi .

• The partition is strong if condition 2 holds with
π(βi) = gcd {α(a) | a ∈ βi} for every i .

• A partition π of α is a κ-partition if π is a κ-set.
• EXAMPLE:

π = {{a2
1,a

3
4}

1, {a6
3,a

4
2}2, {a4

5}4}

is a strong partition of

α = {a2
1,a

4
2,a

6
3,a

3
4,a

4
5}
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Subsets of a multiset

• A multiset γ is a weak subset of α iff C ⊆ A, and for every
c ∈ C one has α(c) | γ(c).

• γ is a strong subset iff it is a weak subset, and for every
c ∈ C one has α(c) = γ(c).

• EXAMPLE:
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Notation

• χν : number of morphisms from a ν-set to a χ-set.

•
{{

ν
κ

}}
: number of weak κ-partitions of a ν-set

.

•
{

ν
κ

}
: number of strong κ-partitions of a ν-set.

• ((χ))ν : number of weak injections from a ν-set to a χ-set.

• (χ)ν : number of strong injections from a ν-set to a χ-set.
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Theorem

The promised generalizations of xn =
∑n

k=0
{n

k

}
(x)k are

obtained as follows.

Theorem
For any two partitions of (non-negative) integers ν and χ, we
have ∑

κ

{{ν
κ

}}
(χ)κ = χν =

∑
κ

{ν
κ

}
((χ))κ ,

where κ ranges over all partitions of a (non-negative) integer.
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Conclusion

• In this work, we have considered possible generalizations
of the basic expansion xn =

∑n
k=0

{n
k

}
(x)k to multisets

arising as Birkhoff duals of finite MV algebras.

• We can think to multisets as swatches of various length, or
shelves of various width. By analysing tidy placements of
swatches into shelves we shall construct a many-valued
analogue of G.C. Rota’s Twelvefold Way to Combinatorics.

• In this framework, some interesting results has been
obtained for

1. Gödel algebras, the algebraic counterpart of Gödel logic, by
investigating forests and open maps,

2. Bounded distributive lattices, by investigating partially
ordered sets and order preserving maps.
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Thank you

Thank you for your attention . . .
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