A Combinatorial Expansion Arising from Łukasiewicz Logic

Pietro Codara¹ Ottavio M. D'Antona² Vincenzo Marra²

¹ Dipartimento di Matematica F. Enriques, Università degli Studi di Milano

² Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano

Presenting author: Pietro Codara

COMBINATORICS 2008

• FRAMEWORK: combinatorial studies of objects which are the duals (in the categorical sense) of algebraic counterparts of many-valued logics.

- FRAMEWORK: combinatorial studies of objects which are the duals (in the categorical sense) of algebraic counterparts of many-valued logics.
- LOGIC: Łukasiewicz logic, a many-valued generalization of Boolean logic.

- FRAMEWORK: combinatorial studies of objects which are the duals (in the categorical sense) of algebraic counterparts of many-valued logics.
- LOGIC: Łukasiewicz logic, a many-valued generalization of Boolean logic.
- CATEGORY: the category of finite MV-algebras (the algebraic counterpart of Łukasiewicz logic).

- FRAMEWORK: combinatorial studies of objects which are the duals (in the categorical sense) of algebraic counterparts of many-valued logics.
- LOGIC: Łukasiewicz logic, a many-valued generalization of Boolean logic.
- CATEGORY: the category of finite MV-algebras (the algebraic counterpart of Łukasiewicz logic).
- DUAL CATEGORY: multisets with particular morphisms.

- FRAMEWORK: combinatorial studies of objects which are the duals (in the categorical sense) of algebraic counterparts of many-valued logics.
- LOGIC: Łukasiewicz logic, a many-valued generalization of Boolean logic.
- CATEGORY: the category of finite MV-algebras (the algebraic counterpart of Łukasiewicz logic).
- DUAL CATEGORY: multisets with particular morphisms.
- AIM OF THIS TALK: to present a generalization of

$$x^n = \sum_{k=0}^n \left\{ \begin{matrix} n \\ k \end{matrix} \right\} (x)_k$$

to our multisets.

OBJECTS: Multisets, *i.e.* functions α : A → N, with A a finite set (the underlying set of α).

OBJECTS: Multisets, *i.e.* functions α : A → N, with A a finite set (the underlying set of α).

An example of multiset is $\alpha = \{a_1^2, a_2^1, a_3^4\}$.

OBJECTS: Multisets, *i.e.* functions α : A → N, with A a finite set (the underlying set of α).

An example of multiset is $\alpha = \{a_1^2, a_2^1, a_3^4\}.$

We associate to each multiset a partition of an integer determined by the multiplicities of the elements of the multiset. For instance, we associate to α the partition $\nu = \langle 1, 2, 4 \rangle$ and we say that α is a ν -set.

OBJECTS: Multisets, *i.e.* functions α : A → N, with A a finite set (the underlying set of α).

An example of multiset is $\alpha = \{a_1^2, a_2^1, a_3^4\}$.

We associate to each multiset a partition of an integer determined by the multiplicities of the elements of the multiset. For instance, we associate to α the partition $\nu = \langle 1, 2, 4 \rangle$ and we say that α is a ν -set.

• MORPHISMS: A morphism $f : \alpha \to \gamma$, with $\alpha : A \to \mathbb{N}$ and $\gamma : C \to \mathbb{N}$, is a function $f : A \to C$ such that, for all $a \in A$,

 $\gamma \circ f(a) \mid \alpha(a),$

where $s \mid t$ stands for "*s* divides *t*".

Let $\alpha : A \to \mathbb{N}, \gamma : C \to \mathbb{N}$ be multisets. Let $f : \alpha \to \gamma$ be a morphism of multisets.

Let $\alpha : A \to \mathbb{N}, \gamma : C \to \mathbb{N}$ be multisets. Let $f : \alpha \to \gamma$ be a morphism of multisets.

1. We call *f* weakly injective iff $f: A \rightarrow C$ is injective.

Let $\alpha : A \to \mathbb{N}, \gamma : C \to \mathbb{N}$ be multisets. Let $f : \alpha \to \gamma$ be a morphism of multisets.

- **1.** We call *f* weakly injective iff $f: A \rightarrow C$ is injective.
- 2. We call *f* weakly surjective iff $f: A \rightarrow C$ is surjective.

Let $\alpha : A \to \mathbb{N}, \gamma : C \to \mathbb{N}$ be multisets. Let $f : \alpha \to \gamma$ be a morphism of multisets.

- **1.** We call *f* weakly injective iff $f: A \rightarrow C$ is injective.
- 2. We call *f* weakly surjective iff $f: A \rightarrow C$ is surjective.
- 3. We call f strongly injective iff $f: A \rightarrow C$ is injective, and

$$\gamma \circ \mathbf{f} = \alpha$$
.

Let $\alpha : A \to \mathbb{N}, \gamma : C \to \mathbb{N}$ be multisets. Let $f : \alpha \to \gamma$ be a morphism of multisets.

- **1.** We call *f* weakly injective iff $f: A \rightarrow C$ is injective.
- 2. We call *f* weakly surjective iff $f: A \rightarrow C$ is surjective.
- 3. We call f strongly injective iff $f: A \rightarrow C$ is injective, and

$$\gamma \circ f = \alpha \, .$$

4. We call *f* strongly surjective iff $f: A \rightarrow C$ is surjective, and for all $c \in C$

$$\gamma(\mathbf{c}) = \gcd \left\{ \alpha(\mathbf{a}) \mid f(\mathbf{a}) = \mathbf{c} \right\}.$$

Injections, an example

Weak injections.

Injections, an example

Weak injections.

Strong injections.

Surjections, an example

Weak surjections.

Surjections, an example

Weak surjections.

Strong surjections.

Factorization systems in $C_{\rm fin}$

 In the category of sets and functions, every function factorizes uniquely as a surjection followed by an injection.

Factorization systems in $C_{\rm fin}$

- In the category of sets and functions, every function factorizes uniquely as a surjection followed by an injection.
- In our category of multisets, each morphism has a unique weakly surjective-strongly injective factorization, and a unique strongly surjective-weakly injective factorization.

Factorization systems in $C_{\rm fin}$

- In the category of sets and functions, every function factorizes uniquely as a surjection followed by an injection.
- In our category of multisets, each morphism has a unique weakly surjective-strongly injective factorization, and a unique strongly surjective-weakly injective factorization.
- C_{fin} has no other factorization systems besides the two above.

- A weak partition of α is a multiset π whose underlying elements β₁, β₂, ..., β_k are multisets satisfying the following conditions.
 - 1. If $B_i = \text{Dom } \beta_i$, $i \in \{1, \dots, k\}$, then $\{B_1, \dots, B_k\}$ is a partition of *A* into *k* blocks.
 - 2. For every $i \in \{1, \ldots, k\}$, $\pi(\beta_i) \mid \text{gcd} \{\alpha(a) \mid a \in B_i\}$, and $\beta_i(a) = \alpha(a)$ for all $a \in B_i$.

- A weak partition of α is a multiset π whose underlying elements β₁, β₂, ..., β_k are multisets satisfying the following conditions.
 - 1. If $B_i = \text{Dom } \beta_i$, $i \in \{1, \dots, k\}$, then $\{B_1, \dots, B_k\}$ is a partition of *A* into *k* blocks.
 - 2. For every $i \in \{1, \ldots, k\}$, $\pi(\beta_i) \mid \text{gcd} \{\alpha(a) \mid a \in B_i\}$, and $\beta_i(a) = \alpha(a)$ for all $a \in B_i$.
- The partition is *strong* if condition 2 holds with $\pi(\beta_i) = \gcd \{ \alpha(a) \mid a \in \beta_i \}$ for every *i*.

- A weak partition of α is a multiset π whose underlying elements β₁, β₂, ..., β_k are multisets satisfying the following conditions.
 - 1. If $B_i = \text{Dom } \beta_i$, $i \in \{1, \dots, k\}$, then $\{B_1, \dots, B_k\}$ is a partition of *A* into *k* blocks.
 - 2. For every $i \in \{1, \ldots, k\}$, $\pi(\beta_i) \mid \text{gcd} \{\alpha(a) \mid a \in B_i\}$, and $\beta_i(a) = \alpha(a)$ for all $a \in B_i$.
- The partition is *strong* if condition 2 holds with $\pi(\beta_i) = \gcd \{ \alpha(a) \mid a \in \beta_i \}$ for every *i*.
- A partition π of α is a κ -partition if π is a κ -set.

- A weak partition of α is a multiset π whose underlying elements β₁, β₂, ..., β_k are multisets satisfying the following conditions.
 - 1. If $B_i = \text{Dom } \beta_i$, $i \in \{1, \dots, k\}$, then $\{B_1, \dots, B_k\}$ is a partition of *A* into *k* blocks.
 - 2. For every $i \in \{1, \ldots, k\}$, $\pi(\beta_i) \mid \text{gcd} \{\alpha(a) \mid a \in B_i\}$, and $\beta_i(a) = \alpha(a)$ for all $a \in B_i$.
- The partition is *strong* if condition 2 holds with $\pi(\beta_i) = \gcd \{ \alpha(a) \mid a \in \beta_i \}$ for every *i*.
- A partition π of α is a κ -partition if π is a κ -set.
- EXAMPLE:

$$\pi = \{\{\pmb{a}_1^2, \pmb{a}_4^3\}^1, \{\pmb{a}_3^6, \pmb{a}_2^4\}^2, \{\pmb{a}_5^4\}^4\}$$

is a strong partition of

$$\alpha = \{a_1^2, a_2^4, a_3^6, a_4^3, a_5^4\}$$

Subsets of a multiset

A multiset γ is a *weak subset* of α iff C ⊆ A, and for every c ∈ C one has α(c) | γ(c).

Subsets of a multiset

- A multiset γ is a *weak subset* of α iff C ⊆ A, and for every c ∈ C one has α(c) | γ(c).
- γ is a strong subset iff it is a weak subset, and for every c ∈ C one has α(c) = γ(c).

Subsets of a multiset

- A multiset γ is a *weak subset* of α iff C ⊆ A, and for every c ∈ C one has α(c) | γ(c).
- γ is a strong subset iff it is a weak subset, and for every c ∈ C one has α(c) = γ(c).
- EXAMPLE:

$$\gamma = \{a_2^8, a_3^6, a_5^4\}$$

is a weak subset of

$$\alpha = \{a_1^2, a_2^4, a_3^6, a_4^3, a_5^4\}$$

.

Notation

• χ^{ν} : number of morphisms from a ν -set to a χ -set.

- χ^{ν} : number of morphisms from a ν -set to a χ -set.
- $\{ \{ {\substack{\nu \\ \kappa} } \} \}$: number of weak κ -partitions of a ν -set.

- χ^{ν} : number of morphisms from a ν -set to a χ -set.
- $\{ \{ {\substack{\nu \\ \kappa} } \} \}$: number of weak κ -partitions of a ν -set.
- $\binom{\nu}{\kappa}$: number of strong κ -partitions of a ν -set.

- χ^{ν} : number of morphisms from a ν -set to a χ -set.
- $\{ \{ {\substack{\nu \\ \kappa} } \} \}$: number of weak κ -partitions of a ν -set.
- ${\nu \atop \kappa}$: number of strong κ -partitions of a ν -set.
- $((\chi))_{\nu}$: number of weak injections from a ν -set to a χ -set.

- χ^{ν} : number of morphisms from a ν -set to a χ -set.
- $\{ \{ {\substack{\nu \\ \kappa} } \} \}$: number of weak κ -partitions of a ν -set.
- $\binom{\nu}{\kappa}$: number of strong κ -partitions of a ν -set.
- $((\chi))_{\nu}$: number of weak injections from a ν -set to a χ -set.
- $(\chi)_{\nu}$: number of strong injections from a ν -set to a χ -set.

The promised generalizations of $x^n = \sum_{k=0}^n {n \\ k}(x)_k$ are obtained as follows.

Theorem

For any two partitions of (non-negative) integers ν and χ , we have

$$\sum_{\kappa} \left\{ \left\{ {\nu \atop \kappa} \right\} \right\} (\chi)_{\kappa} = \chi^{\nu} = \sum_{\kappa} \left\{ {\nu \atop \kappa} \right\} ((\chi))_{\kappa}$$

where κ ranges over all partitions of a (non-negative) integer.

• In this work, we have considered possible generalizations of the basic expansion $x^n = \sum_{k=0}^n {n \choose k} (x)_k$ to multisets arising as Birkhoff duals of finite MV algebras.

- In this work, we have considered possible generalizations of the basic expansion $x^n = \sum_{k=0}^n {n \\ k}(x)_k$ to multisets arising as Birkhoff duals of finite MV algebras.
- We can think to multisets as swatches of various length, or shelves of various width. By analysing tidy placements of swatches into shelves we shall construct a many-valued analogue of G.C. Rota's Twelvefold Way to Combinatorics.

- In this work, we have considered possible generalizations of the basic expansion $x^n = \sum_{k=0}^n {n \\ k}(x)_k$ to multisets arising as Birkhoff duals of finite MV algebras.
- We can think to multisets as swatches of various length, or shelves of various width. By analysing tidy placements of swatches into shelves we shall construct a many-valued analogue of G.C. Rota's Twelvefold Way to Combinatorics.
- In this framework, some interesting results has been obtained for
 - Gödel algebras, the algebraic counterpart of Gödel logic, by investigating forests and open maps,

- In this work, we have considered possible generalizations of the basic expansion $x^n = \sum_{k=0}^n {n \\ k}(x)_k$ to multisets arising as Birkhoff duals of finite MV algebras.
- We can think to multisets as swatches of various length, or shelves of various width. By analysing tidy placements of swatches into shelves we shall construct a many-valued analogue of G.C. Rota's Twelvefold Way to Combinatorics.
- In this framework, some interesting results has been obtained for
 - 1. Gödel algebras, the algebraic counterpart of Gödel logic, by investigating forests and open maps,
 - 2. Bounded distributive lattices, by investigating partially ordered sets and order preserving maps.

CONCLUSION

Thank you

Thank you for your attention