

Independent Sets of Families of Graphs via Finite State Automata

P. Codara, O.M. D'Antona, M. Galasi, and G. Lavado

Pietro Codara (IIIA-CSIC)

June 30, 2017

The Second Malta Conference in Graph Theory and Combinatorics, 26-30 June 2017, Qawra, Malta

1. Introduction

- 2. Telescopic families of graphs
- 3. The Independence Automaton
- 4. Main result and proof
- 5. Further work
- 6. References

Introduction

An independent set of a graph is a set of pairwise non-adjacent vertices of the graph.

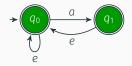
A (two-dimensional) grid graph $G_{m,n}$ is the Cartesian product of the paths P_m and P_n .

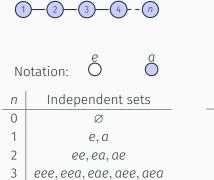
The transfer matrix of a grid graph $G_{m,n}$ is a matrix T of size $F_{m+1} \times F_{m+1}$ indexed by the set of independent sets of P_m . We have

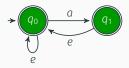
$$T[S_i, S_j] = \begin{cases} 1 & \text{if } S_i \cup S_j \text{ is an independent set of } G_{m,2} \\ 0 & \text{otherwise} \end{cases}$$

The sum of the elements of the matrix $(I - xT)^{-1}$ provides the generating function of the numbers of independent sets of $G_{m,n}$.

3 $\binom{n}{n}$ 2 4

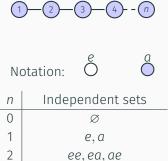






п	Accepted words
0	λ
1	e,a
2	ee, ea, ae
3	eee, eea, eae, aee, aea

3



	0	λ
	1	е, а
	2	ee, ea, ae
e, aea	3	eee, eea, eae, aee, aea

5

⇒

	е	а
е	1	1
а	1	0

[Calkin&Wilf '98]

 $\begin{cases} S(x) = xS(x) + xA(x) + 1 \\ A(x) = xS(x) + 1 \end{cases}$

[Chomsky et al. '63, Gruger et al. '12]

$$q_0 \xrightarrow{a} q_1$$

 e

Accepted words

independent sets	
Ø	0
е, а	1
ee,ea,ae	2
eee, eea, eae, aee, aea	3

$$1 - 2 - 3 - 4 - n$$
Notation: e

$$n$$
Independent sets
$$0$$

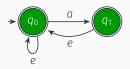
$$e, a$$

$$2$$

$$ee, ea, ae$$

$$3$$

$$eee, eea, eae, aee, aea$$



n	Accepted words
0	λ
1	e,a
2	ee, ea, ae
3	eee, eea, eae, aee, aea

	е	а			S(x) =	xS(x) + xA(x) + 1
е	1	1	<	í	$\Delta(\mathbf{x}) -$	xS(x) + 1
	1			l	/(//) —	X3(X)

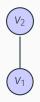
[Calkin&Wilf '98]

[Chomsky et al. '63, Gruger et al. '12]

 $S(x) = 1 + 2x + 3x^2 + 5x^3 + 8x^4 + 13x^5 + \mathcal{O}(x^6)$

Telescopic families of graphs

M, the module, is any graph with m > 0 vertices v_1, v_2, \ldots, v_m .

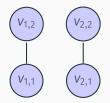


Telescopic families of graphs, definition

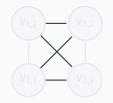
Fix a non-negative integer *h* (the power).

 $F_{M,h}$, the *h*-frame of *M*, is the graph such that

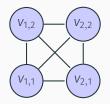
$$V(F_{M,h}) = \bigcup_{i=1}^{h+1} V_i, \text{ where } V_i = \{v_{i,j} \mid j = 1, 2, \dots, m\}, \text{ and}$$
$$E(F_{M,h}) = \bigcup_{i=1}^{h+1} \{(v_{i,t}, v_{i,t'}) \mid (v_t, v_{t'}) \in E(M)\}.$$



X, the cross-connection of $F_{M,h}$, is any subset of $\{(v_{i,j}, v_{i',j'}) \mid 1 \le i < i' \le h + 1; v_{i,j} \in V_i; v_{i',j'} \in V_{i'}\}$, the set of *inter-layer edges* of $F_{M,h}$.



C, the connection, is obtained by adding the inter-layer edges of *X* to the *h*-frame of *M*.



Telescopic families of graphs, definition

Definition

A telescopic family of graphs, TFG, is a sequence of graphs $\{G_n\}_{n\geq 0}$ identified by a triplet (M, h, X).

The graphs of $\{G_n\}_{n\geq 0}$ are:

(i) G_0 , that is the empty graph,

(ii) for $1 \le n \le h + 1$, G_n is the subgraph of the connection C induced by $V_1 \cup V_2 \cup \cdots \cup V_n$,

(iii) for n > h + 1, G_n is defined by letting

 $V(G_n) = V(G_{n-1}) \cup \{v_{n,j} \mid j = 1, 2, \dots, m\}, \text{ and}$ $E(G_n) = E(G_{n-1}) \cup \{(v_{i+1,j}, v_{i'+1,j'}) \mid (v_{i,j}, v_{i',j'}) \in E(G_{n-1})\}.$

Telescopic families of graphs, definition

Definition

A telescopic family of graphs, TFG, is a sequence of graphs $\{G_n\}_{n\geq 0}$ identified by a triplet (M, h, X).

The graphs of $\{G_n\}_{n\geq 0}$ are:

(i) G_0 , that is the empty graph,

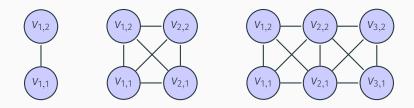
(ii) for $1 \le n \le h + 1$, G_n is the subgraph of the connection C induced by $V_1 \cup V_2 \cup \cdots \cup V_n$,

(iii) for n > h + 1, G_n is defined by letting

 $V(G_n) = V(G_{n-1}) \cup \{v_{n,j} \mid j = 1, 2, \dots, m\}, \text{ and}$ $E(G_n) = E(G_{n-1}) \cup \{(v_{i+1,j}, v_{i'+1,j'}) \mid (v_{i,j}, v_{i',j'}) \in E(G_{n-1})\}.$

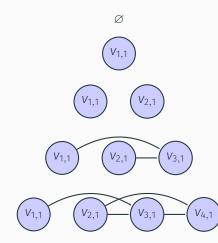
Remarks. (a) $G_1 \simeq M$. (b) $G_{h+1} = C$.

The graphs Z_1 , Z_2 and Z_3 of the TFG $\{Z_n\}_{n\geq 0}$ identified by (M, h, X), for M, h, X as in the previous examples, are:

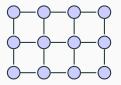


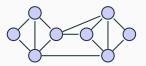
Telescopic families of graphs, examples

The TFG $\{G_n\}_{n\geq 0}$ identified by $(K_1, 2, \{(v_{1,1}, v_{3,1}), (v_{2,1}, v_{3,1})\})$ contains the following graphs:

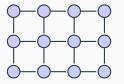


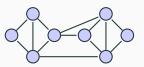
We can construct TFGs of the following forms





We can construct TFGs of the following forms





...but the following family is not a TFG.

The Independence Automaton

Running example

In this part of the presentation we make use of the telescopic family $\{G_n\}_{n\geq 0}$ identified by $(K_1, 2, \{(v_{1,1}, v_{3,1}), (v_{2,1}, v_{3,1})\})$ as a running example.

Running example

In this part of the presentation we make use of the telescopic family $\{G_n\}_{n\geq 0}$ identified by $(K_1, 2, \{(v_{1,1}, v_{3,1}), (v_{2,1}, v_{3,1})\})$ as a running example.

We also make use of a simplified (not general) notation, in order to allow an easy graphical representation of our results.

In this part of the presentation we make use of the telescopic family $\{G_n\}_{n\geq 0}$ identified by $(K_1, 2, \{(v_{1,1}, v_{3,1}), (v_{2,1}, v_{3,1})\})$ as a running example.

We also make use of a simplified (not general) notation, in order to allow an easy graphical representation of our results.

We now show how to build, in a systematic way, an Independence Automaton (IA) for $\{G_n\}_{n\geq 0}$, that is a deterministic finite automaton $A_{M,h,X} = (\Sigma, Q, q_0, F, \delta)$ that accepts a language in which the number of *n*-symbol words equals the number of independent sets of G_n , for any $n \geq 0$. The alphabet is obtained by assigning a symbol to each independent set of the module M (via a bijection ϕ).

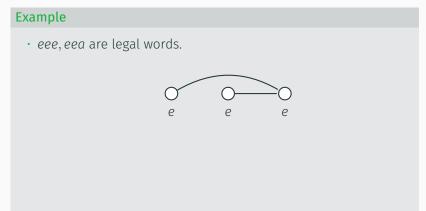
Example

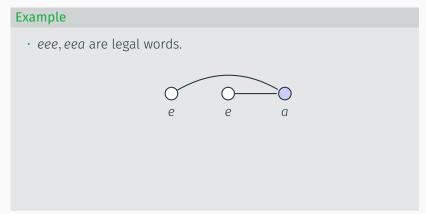
• We have two independent sets of the module $M = K_1$. This is ϕ :

$$\varnothing \mapsto e \qquad \{V_1\} \mapsto a$$

• The alphabet of our IA is

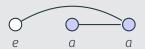
$$\Sigma = \{e, a\}$$





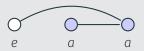
Example

• eee, eea are legal words. eaa is not.



Example

• eee, eea are legal words. eaa is not.



• The set of states of our IA is $Q = \{q_w \mid w \text{ is a legal word}\}.$

Example

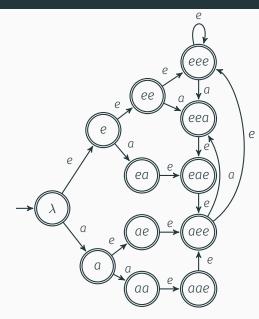
• eee, eea are legal words. eaa is not.

- The set of states of our IA is $Q = \{q_w \mid w \text{ is a legal word}\}.$
- q_{λ} is the initial state.

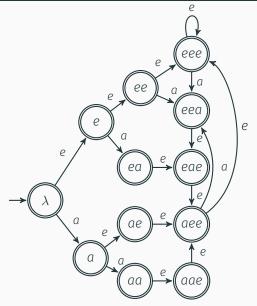
Example

• eee, eea are legal words. eaa is not.

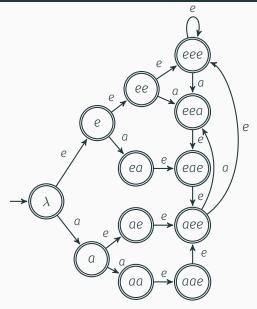
- The set of states of our IA is $Q = \{q_w \mid w \text{ is a legal word}\}.$
- q_{λ} is the initial state.
- All states are accepting states.



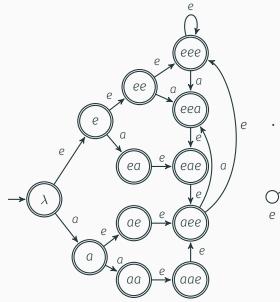
State transition diagram of the IA



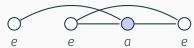
$$\cdot \delta(q_{ea}, e) = q_{eae}$$



$$\cdot \delta(q_{eea}, e) = q_{eae}$$



$$\cdot \delta(q_{eea}, e) = q_{eae}$$



Properties of the independence automaton

• Every Independence Automaton has at least m + 1 states: q_{λ} and one for each vertex of M.

Properties of the independence automaton

- Every Independence Automaton has at least m + 1 states: q_{λ} and one for each vertex of M.
- The latter implies that the IA of a TFG is not minimal. That is, one can find another automaton accepting the same language, but having a smaller set of states.

Properties of the independence automaton

- Every Independence Automaton has at least m + 1 states: q_{λ} and one for each vertex of M.
- The latter implies that the IA of a TFG is not minimal. That is, one can find another automaton accepting the same language, but having a smaller set of states.
- However, as shown with our example, we can build an Independence Automaton of a TFG in a systematic way.

Properties of the independence automaton

- Every Independence Automaton has at least m + 1 states: q_{λ} and one for each vertex of M.
- The latter implies that the IA of a TFG is not minimal. That is, one can find another automaton accepting the same language, but having a smaller set of states.
- However, as shown with our example, we can build an Independence Automaton of a TFG in a systematic way.
- Further, if z is the number of independent sets of the module M, the number of states of $A_{M,h,X}$ is bounded from above by

$$\sum_{t=0}^{h+1} z^t = \frac{z^{h+2} - 1}{z - 1} \; .$$

Main result and proof

Formalising

Let $\{G_n\}_{n\geq 0}$ be a TFG identified by (M, h, X). Denote by $A_{M,h,X}$ the Independence Automaton of $\{G_n\}_{n\geq 0}$.

• Let \mathcal{I} be the set of all independent sets of M, with $|\mathcal{I}| = z$. We fix a bijection $\phi : \mathcal{I} \to \{0, \dots, z-1\}$ which assigns a non-negative integer to each independent set of M.

 $\boldsymbol{\Sigma} = \left\{ a_0, \ldots, a_{Z-1} \right\} = \left\{ a_{\phi(Y)} \mid Y \in \mathcal{I} \right\}.$

Formalising

Let $\{G_n\}_{n\geq 0}$ be a TFG identified by (M, h, X). Denote by $A_{M,h,X}$ the Independence Automaton of $\{G_n\}_{n\geq 0}$.

• Let \mathcal{I} be the set of all independent sets of M, with $|\mathcal{I}| = z$. We fix a bijection $\phi : \mathcal{I} \to \{0, \dots, z-1\}$ which assigns a non-negative integer to each independent set of M.

 $\boldsymbol{\Sigma} = \{a_0, \ldots, a_{z-1}\} = \{a_{\phi(Y)} \mid Y \in \mathcal{I}\}.$

• We define a family of functions $\Psi_n : \Sigma^n \to \mathcal{P}(V(G_n))$ by letting, for each $w = c_1 c_2 \cdots c_n \in \Sigma^n$, $n \ge 1$,

$$\Psi_n(w) = \bigcup_{i=1}^n \{v_{i,j_1}, v_{i,j_2}, \dots, v_{i,j_q} \mid c_i = a_t; \ \phi^{-1}(t) = \{v_{j_1}, v_{j_2}, \dots, v_{j_q}\}\}.$$

Further, we let $\Psi_0(\lambda) = \varnothing$.

Formalising

Let $\{G_n\}_{n\geq 0}$ be a TFG identified by (M, h, X). Denote by $A_{M,h,X}$ the Independence Automaton of $\{G_n\}_{n\geq 0}$.

• Let \mathcal{I} be the set of all independent sets of M, with $|\mathcal{I}| = z$. We fix a bijection $\phi : \mathcal{I} \to \{0, \dots, z-1\}$ which assigns a non-negative integer to each independent set of M.

 $\boldsymbol{\Sigma} = \left\{ a_0, \ldots, a_{Z-1} \right\} = \left\{ a_{\phi(Y)} \mid Y \in \mathcal{I} \right\}.$

• We define a family of functions $\Psi_n : \Sigma^n \to \mathcal{P}(V(G_n))$ by letting, for each $w = c_1 c_2 \cdots c_n \in \Sigma^n$, $n \ge 1$,

$$\Psi_n(w) = \bigcup_{i=1}^n \{v_{i,j_1}, v_{i,j_2}, \dots, v_{i,j_q} \mid c_i = a_t; \ \phi^{-1}(t) = \{v_{j_1}, v_{j_2}, \dots, v_{j_q}\}\}.$$

Further, we let $\Psi_0(\lambda) = \varnothing$.

• We say that $w \in \Sigma^*$ is a legal word if $|w| \le h + 1$, and for each $(v_{i,j}, v_{i',j'}) \in X$, $\{v_{i,j}, v_{i',j'}\} \nsubseteq \Psi_{|w|}(w)$.

• The set of states of $A_{M,h,X}$ is $Q(A_{M,h,X}) = \{q_w \mid w \text{ is a legal word}\}.$

Main result

- The set of states of $A_{M,h,X}$ is $Q(A_{M,h,X}) = \{q_w \mid w \text{ is a legal word}\}.$
- We define a partition of $Q(A_{M,h,X})$ in the following way.

For $i = 0, \ldots, h + 1$, $Q_i = \{q_w \mid w \text{ is a legal word of length } i\}$.

This allows us to see $Q(A_{M,h,X})$ as a layered structure.

- We define the transitions of $A_{M,h,X}$, as follows.
 - 1. For $0 \le i \le h$, $q_w \in Q_i$, $a_j \in \Sigma$, we set $\delta(q_w, a_j) = q_{wa_j}$ iff $q_{wa_j} \in Q_{i+1}$.
 - 2. For $a_k \in \Sigma$, $\bar{w} \in \Sigma^*$, $|\bar{w}| = h$, $w = a_k \bar{w}$, $q_w \in Q_{h+1}$, and $a_j \in \Sigma$, we set $\delta(q_w, a_j) = q_{\bar{w}a_j}$ iff $q_{\bar{w}a_j} \in Q_{h+1}$.

Main result

- The set of states of $A_{M,h,X}$ is $Q(A_{M,h,X}) = \{q_w \mid w \text{ is a legal word}\}.$
- We define a partition of $Q(A_{M,h,X})$ in the following way.

For $i = 0, \ldots, h + 1$, $Q_i = \{q_w \mid w \text{ is a legal word of length } i\}$.

This allows us to see $Q(A_{M,h,X})$ as a layered structure.

- We define the transitions of $A_{M,h,X}$, as follows.
 - 1. For $0 \le i \le h$, $q_w \in Q_i$, $a_j \in \Sigma$, we set $\delta(q_w, a_j) = q_{wa_j}$ iff $q_{wa_j} \in Q_{i+1}$.
 - 2. For $a_k \in \Sigma$, $\overline{w} \in \Sigma^*$, $|\overline{w}| = h$, $w = a_k \overline{w}$, $q_w \in Q_{h+1}$, and $a_j \in \Sigma$, we set $\delta(q_w, a_j) = q_{\overline{w}a_j}$ iff $q_{\overline{w}a_j} \in Q_{h+1}$.

Theorem

Let $w \in \Sigma^*$ and $A_{M,h,X} = (\Sigma, Q, q_\lambda, F, \delta)$ be the Independence Automaton of a TFG $\{G_n\}_{n\geq 0}$ identified by (M, h, X). Then, $w \in L(A_{M,h,X})$ if and only if $\Psi_{|w|}(w)$ is an independent set of $G_{|w|}$.

Sketch of the proof

- 1. w is a legal word iff $\Psi_{|w|}(w)$ is an independent set of $G_{|w|}$.
- 2. $w \in L(A_{M,h,X})$ iff either |w| < h + 1 and w is a legal word, or $|w| \ge h + 1$ and each factor of w of length h + 1 is a legal word.

This concludes the proof of the case $|w| \le h + 1$.

- 3. Let $e = (v_{i,j}, v_{i',j'})$ be any edge of G_n . Then |i' i| < h + 1.
- 4. For all t > 0, for all $n \ge h + t$, if $e = (v_{i,j}, v_{i',j'}) \in X$, then $(v_{i+t-1,j}, v_{i'+t-1,j'}) \in E(G_n)$.
- 5. For t > 0, and $e = (v_{i,j}, v_{i',j'}) \in X$, let $\tau_t(e) = \{v_{i+t-1,j}, v_{i'+t-1,j'}\}$. Let $|w| = l \ge h + 1$. Then, $\Psi_l(w)$ is an independent set of G_l if and only if for all $t \in \{1, \dots, l-h\}$ and for each $e \in X$, $\tau_t(e) \nsubseteq \Psi_l(w)$.
- 6. Let $|w| = l \ge h + 1$. Then, $\Psi_l(w)$ is an independent set of G_l iff for each factor \bar{w} of w having length h + 1, $\Psi_{h+1}(\bar{w})$ is an independent set of G_{h+1} .

This concludes the proof of the case |w| > h + 1.

Further work

• Following this work, we have been working on an extension of our class of families of graphs on which a similar technique can be adopted. The main aim was to allow dealing with cycles.

- Following this work, we have been working on an extension of our class of families of graphs on which a similar technique can be adopted. The main aim was to allow dealing with cycles.
- In fact, we can produce a cyclic expansion of each TFG, and construct the Independence Automaton of the new family.

- Following this work, we have been working on an extension of our class of families of graphs on which a similar technique can be adopted. The main aim was to allow dealing with cycles.
- In fact, we can produce a cyclic expansion of each TFG, and construct the Independence Automaton of the new family.
- The "cyclic expansion" of the Independence Automaton turns out to be, in general, larger and more complex than the previuos one. In particular, it contains both final and non-final states.

References

N. I. Calkin and H. S. Wilf.

The Number of Independent Sets in a Grid Graph. SIAM Journal on Discrete Mathematics, 11(1):54–60, 1998.

- N. Chomsky and M. Schützenberger. The Algebraic Theory of Context-Free Languages. In Studies in Logic and the Foundations of Mathematics. volume 35, pages 118–161. Elsevier, 1963.

📕 H. Gruber, J. Lee, and J. Shallit. Enumerating regular expressions and their languages. CoRR, abs/1204.4982, 2012.

Thank you for your attention.