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Introduction



Inspiration

An independent set of a graph is a set of pairwise non-adjacent
vertices of the graph.

A (two-dimensional) grid graph Gm,n is the Cartesian product of the
paths Pm and Pn.

The transfer matrix of a grid graph Gm,n is a matrix T of size
Fm+1 × Fm+1 indexed by the set of independent sets of Pm. We have

T[Si, Sj] =
{

1 if Si ∪ Sj is an independent set of Gm,2

0 otherwise

The sum of the elements of the matrix (I− xT)−1 provides the
generating function of the numbers of independent sets of Gm,n.



Motivation

1 2 3 4 n

Notation:
e a

n Independent sets
0 ∅
1 e,a
2 ee, ea,ae
3 eee, eea, eae,aee,aea

e a
e 1 1
a 1 0

[Calkin&Wilf ’98]

q0 q1

e

a

e

n Accepted words
0 λ

1 e,a
2 ee, ea,ae
3 eee, eea, eae,aee,aea{
S(x) = xS(x) + xA(x) + 1
A(x) = xS(x) + 1

[Chomsky et al. ’63, Gruger et al. ’12]

S(x) = 1+ 2x + 3x2 + 5x3 + 8x4 + 13x5 +O(x6)
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Telescopic families of graphs



Telescopic families of graphs, definition

M, the module, is any graph with m > 0 vertices v1, v2, . . . , vm.

v1

v2



Telescopic families of graphs, definition

Fix a non-negative integer h (the power).

FM,h, the h-frame of M, is the graph such that

V(FM,h) =
h+1⋃
i=1

Vi, where Vi = {vi,j | j = 1, 2, . . . ,m}, and

E(FM,h) =
h+1⋃
i=1

{(vi,t, vi,t′) | (vt, vt′) ∈ E(M)}.

v1,1

v1,2

v2,1

v2,2



Telescopic families of graphs, definition

X, the cross-connection of FM,h, is any subset of
{(vi,j, vi′,j′) | 1 ≤ i < i′ ≤ h+ 1; vi,j ∈ Vi; vi′,j′ ∈ Vi′}, the set of
inter-layer edges of FM,h.

v1,1

v1,2

v2,1

v2,2



Telescopic families of graphs, definition

C, the connection, is obtained by adding the inter-layer edges of X to
the h-frame of M.

v1,1

v1,2

v2,1

v2,2



Telescopic families of graphs, definition

Definition
A telescopic family of graphs, tfg, is a sequence of graphs {Gn}n≥0
identified by a triplet (M,h, X).

The graphs of {Gn}n≥0 are:

(i) G0, that is the empty graph,
(ii) for 1 ≤ n ≤ h+ 1, Gn is the subgraph of the connection C

induced by V1 ∪ V2 ∪ · · · ∪ Vn,
(iii) for n > h+ 1, Gn is defined by letting

V(Gn) = V(Gn−1) ∪ {vn,j | j = 1, 2, . . . ,m}, and
E(Gn) = E(Gn−1) ∪ {(vi+1,j, vi′+1,j′) | (vi,j, vi′,j′) ∈ E(Gn−1)}.

Remarks. (a) G1 ' M. (b) Gh+1 = C.
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Telescopic families of graphs, examples

The graphs Z1, Z2 and Z3 of the tfg {Zn}n≥0 identified by (M,h, X), for
M, h, X as in the previous examples, are:

v1,1

v1,2

v1,1

v1,2

v2,1

v2,2

v1,1

v1,2

v2,1

v2,2

v3,1

v3,2



Telescopic families of graphs, examples

The tfg {Gn}n≥0 identified by (K1, 2, {(v1,1, v3,1), (v2,1, v3,1)}) contains
the following graphs:

∅

v1,1

v1,1 v2,1

v1,1 v2,1 v3,1

v1,1 v2,1 v3,1 v4,1



Telescopic families of graphs, examples

We can construct tfgs of the following forms

…but the following family is not a tfg.
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The Independence Automaton



Running example

In this part of the presentation we make use of the telescopic family
{Gn}n≥0 identified by (K1, 2, {(v1,1, v3,1), (v2,1, v3,1)}) as a running
example.

∅

We also make use of a simplified (not general) notation, in order to
allow an easy graphical representation of our results.

We now show how to build, in a systematic way, an Independence
Automaton (IA) for {Gn}n≥0, that is a deterministic finite automaton
AM,h,X = (Σ,Q,q0, F, δ) that accepts a language in which the number
of n-symbol words equals the number of independent sets of Gn, for
any n ≥ 0.
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Alphabet

The alphabet is obtained by assigning a symbol to each independent
set of the module M (via a bijection φ).

Example

• We have two independent sets of the module M = K1. This is φ:

∅ 7→ e {v1} 7→ a

• The alphabet of our IA is

Σ = {e,a}



Legal words and states

The legal words are those strings w ∈ Σ∗ of length at most h+ 1
which are associated with the independent sets of the graphs
G0,G1, . . . ,Gh+1.

Example

• eee, eea are legal words.

eaa is not.

e ea ea

• The set of states of our IA is Q = {qw | w is a legal word}.
• qλ is the initial state.
• All states are accepting states.
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Transitions

eee

eea

eae

aee

aae

ee

ea

ae

aa

e

a

λ

e

a

e

e

a

e

e

a

e

e

e

e

a

e

a

e

a

e

State transition diagram of the IA

e e a e



Transitions

eee

eea

eae

aee

aae

ee

ea

ae

aa

e

a

λ

e

a

e

e

a

e

e

a

e

e

e

e

a

e

a

e

a

e • δ(qea, e) = qeae

e e a e



Transitions

eee

eea

eae

aee

aae

ee

ea

ae

aa

e

a

λ

e

a

e

e

a

e

e

a

e

e

e

e

a

e

a

e

a

e • δ(qeea, e) = qeae

e e a e



Transitions

eee

eea

eae

aee

aae

ee

ea

ae

aa

e

a

λ

e

a

e

e

a

e

e

a

e

e

e

e

a

e

a

e

a

e • δ(qeea, e) = qeae

e e a e



Properties of the independence automaton

• Every Independence Automaton has at least m+ 1 states: qλ
and one for each vertex of M.

• The latter implies that the IA of a tfg is not minimal. That is, one
can find another automaton accepting the same language, but
having a smaller set of states.

• However, as shown with our example, we can build an
Independence Automaton of a tfg in a systematic way.

• Further, if z is the number of independent sets of the module M,
the number of states of AM,h,X is bounded from above by

h+1∑
t=0

zt = zh+2 − 1
z − 1

.
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Main result and proof



Formalising

Let {Gn}n≥0 be a tfg identified by (M,h, X). Denote by AM,h,X the
Independence Automaton of {Gn}n≥0.

• Let I be the set of all independent sets of M, with |I| = z. We fix
a bijection φ : I → {0, . . . , z − 1} which assigns a non-negative
integer to each independent set of M.

Σ = {a0, . . . ,az−1} = {aφ(Y) | Y ∈ I} .

• We define a family of functions Ψn : Σ
n → P(V(Gn)) by letting,

for each w = c1c2 · · · cn ∈ Σn, n ≥ 1,

Ψn(w) =
n⋃
i=1

{vi,j1 , vi,j2 , . . . , vi,jq | ci = at; φ−1(t) = {vj1 , vj2 , . . . , vjq}}.

Further, we let Ψ0(λ) = ∅.
• We say that w ∈ Σ∗ is a legal word if |w| ≤ h+ 1, and for each
(vi,j, vi′,j′) ∈ X, {vi,j, vi′,j′} * Ψ|w|(w).
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Main result

• The set of states of AM,h,X is Q(AM,h,X) = {qw | w is a legal word}.

• We define a partition of Q(AM,h,X) in the following way.

For i = 0, . . . ,h+ 1, Qi = {qw | w is a legal word of length i} .

This allows us to see Q(AM,h,X) as a layered structure.
• We define the transitions of AM,h,X , as follows.

1. For 0 ≤ i ≤ h, qw ∈ Qi, aj ∈ Σ, we set δ(qw, aj) = qwaj iff qwaj ∈ Qi+1.
2. For ak ∈ Σ, w̄ ∈ Σ∗, |w̄| = h, w = akw̄, qw ∈ Qh+1, and aj ∈ Σ, we set

δ(qw, aj) = qw̄aj iff qw̄aj ∈ Qh+1.

Theorem
Let w ∈ Σ∗ and AM,h,X = (Σ,Q,qλ, F, δ) be the Independence
Automaton of a tfg {Gn}n≥0 identified by (M,h, X). Then,
w ∈ L(AM,h,X) if and only if Ψ|w|(w) is an independent set of G|w|.
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Sketch of the proof

1. w is a legal word iff Ψ|w|(w) is an independent set of G|w|.
2. w ∈ L(AM,h,X) iff either |w| < h+ 1 and w is a legal word, or

|w| ≥ h+ 1 and each factor of w of length h+ 1 is a legal word.

This concludes the proof of the case |w| ≤ h+ 1.

3. Let e = (vi,j, vi′,j′) be any edge of Gn. Then |i′ − i| < h+ 1.
4. For all t > 0, for all n ≥ h+ t, if e = (vi,j, vi′,j′) ∈ X, then

(vi+t−1,j, vi′+t−1,j′) ∈ E(Gn).
5. For t > 0, and e = (vi,j, vi′,j′) ∈ X, let τt(e) = {vi+t−1,j, vi′+t−1,j′}.
Let |w| = l ≥ h+ 1. Then, Ψl(w) is an independent set of Gl if and
only if for all t ∈ {1, . . . , l− h} and for each e ∈ X, τt(e) * Ψl(w).

6. Let |w| = l ≥ h+ 1. Then, Ψl(w) is an independent set of Gl iff for
each factor w̄ of w having length h+ 1, Ψh+1(w̄) is an
independent set of Gh+1.

This concludes the proof of the case |w| > h+ 1.



Further work



The cyclic expansion of a tfg

• Following this work, we have been working on an extension of
our class of families of graphs on which a similar technique can
be adopted. The main aim was to allow dealing with cycles.

• In fact, we can produce a cyclic expansion of each tfg, and
construct the Independence Automaton of the new family.

• The “cyclic expansion” of the Independence Automaton turns
out to be, in general, larger and more complex than the previuos
one. In particular, it contains both final and non-final states.
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