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Abstract—The Euler characteristic can be defined as a spe-
cial kind of valuation on finite distributive lattices. This work
begins with some brief consideration on the rôle of the Euler
characteristic on NM algebras, the algebraic counterpart of
Nilpotent Minimum logic. Then, we introduce a new valuation,
a modified version of the Euler characteristic we call idempotent
Euler characteristic. We show that the new valuation encodes
information about the formulæ in NM propositional logic.
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I. INTRODUCTION

Let L be a distributive lattice. A function ν : L → R is a
valuation if it satisfies

ν(x) + ν(y) = ν(x ∨ y) + ν(x ∧ y) (1)

for all x, y, z ∈ L. Recall that an element x ∈ L is join-
irreducible if it is not the bottom element of L, and x = y∨ z
implies x = y or x = z for all y, z ∈ L. When L is finite,
it turns out [19, Corollary 2] that any valuation ν is uniquely
determined by its values on the join-irreducible elements of L,
along with its value at the bottom element ⊥ of L.

A special kind of valuation, introduced by V. Klee and
G.-C. Rota, is the Euler characteristic, defined as follows.

Definition I.1 ([16, p. 120], [19, p. 36]). The Euler charac-
teristic of a finite distributive lattice L is the unique valuation
χ : L→ R such that χ(x) = 1 for any join-irreducible element
x ∈ L, and χ(⊥) = 0.

In [9], [10], the authors investigate the notion of Euler
characteristic in a particular case of finite distributive lattice:
Gödel algebras, the algebraic counterpart of the many-valued
logic known as Gödel logic1. Specifically, they consider the
Lindenbaum algebra of Gödel logic over a finite set of vari-
ables and then they investigate the values assigned by the Euler
characteristic to each equivalence class of formulæ. It turns out
that the Euler characteristic encode logical information about
the formulæ, but such information is classical, i.e. coincide
with the analogous notion defined in classical propositional
logic; namely, the Euler characteristic of a formula is the
number of Boolean assignments which makes the formula true.
Further, the authors generalize the notion of Euler characteris-
tic to a family of new valuations, the many-valued versions of
the Euler characteristic. The latter valuations are shown to be
able to separate many-valued tautologies from non-tautologies.

1For background on Gödel logic see, e.g., [15]. The characterization of
Gödel algebra used in the cited papers is provided in [3], [8], [11].

In this paper we approach the same problem on a different
many-valued logic, the Nilpotent Minimum logic NM. We will
briefly investigate the logical meaning of the Euler character-
istic on NM algebras, the algebraic counterpart of NM logic,
showing that such valuation, as is, can not carry information
about assignments making a formula classically true. In order
to obtain such a result we will introduce a new valuation, a
modified version of the Euler characteristic we call idempotent
Euler characteristic, and prove that such valuation indeed is
capable of capturing the desired information.

The NM logic is briefly presented in the next section.
Section III contains our main results. In Section IV we spend
a few word to describe a particular schematic extension of NM
logic, known as the logic NM-. We easily obtain, as a corollary
of our main result, that the idempotent Euler characteristic
on NM- algebras plays exactly the same rôle as the Euler
characteristic on Gödel algebras. We conclude our work with
some consideration on possible further results.

II. THE LOGIC OF THE NILPOTENT MINIMUM

A triangular norm (also called t-norm; see [17]) is a binary,
commutative, associative and monotonically non-decreasing
operation on [0, 1]2 that has 1 as unit element. The Nilpotent
Minimum t-norm is a first example of a left-continuous but not
continuous t-norm. It has been introduced by Fodor [13], and
it is defined as

x� y =

{
min{x, y} if x+ y > 1,

0 otherwise.
(2)

for every x, y ∈ [0, 1].

Hence, the Nilpotent Minimum propositional logic (NM
for short) lies in the hierarchy of extensions of the Monoidal
T-norm based Logic (MTL), introduced in [12] by Esteva
and Godo. The propositional language of MTL is built over
the binary connectives �,∧,→ and the constant ⊥. Usually
derived connectives are x ↔ y = (x → y) � (y → x),
x ∨ y = ((x → y) → y) ∧ ((y → x) → x), the negation
¬x = x→ ⊥, and the constant > = ¬⊥. We let ϕ2 = ϕ�ϕ.

The WNM logic is obtained from MTL by adding the
axiom:

¬(x� y) ∨ ((x ∧ y)→ (x� y)), (WNM)

while NM logic is given by WNM plus involutivity axiom:

¬¬x→ x. (INV)



The aforementioned Gödel logic can be obtained by adding
the idempotency axiom to MTL logic. If we add the axiom
¬(¬x2)2 ↔ (¬(¬x)2)2 to NM, we obtain its negation fixpoint-
free version, called NM− [14].

The following form of local deduction theorem holds in
NM logic [2],

ϕ `NM ψ if and only if `NM ϕ2 → ψ. (3)

Hence, we say that NM logic proves ψ from ϕ, in symbols
ϕ `NM ψ, when ϕ2 → ψ is a theorem of NM logic.

The algebraic semantic of MTL is given by the variety
of MTL algebras [12]. As Gödel algebras are exactly the
prelinear Heyting algebras, NM algebras are the prelinear
Nelson algebras [7]. Hence, NM logic is to Nelson logic
(constructive logic with strong negation) as Gödel logic is to
Intuitionistic logic.

The algebraic variety of NM algebras corresponding to
NM logic has a nice property, that it is locally finite [18].
This means that finitely generated free algebras are finite.
Hence, a combinatorial treatment of free n-generated algebras
is feasible. Indeed, a characterization of free n-generated NM
algebras based on partially ordered sets (posets for short) has
been given in [4].

In the next section we introduce some algebraic and
combinatorial notion that will be useful throughout the paper.

A. NM algebras

Abusing notation, in the following we identify logical
connectives with their algebraic interpretations. An algebra
A = 〈A,∧,∨,�,→,⊥,>〉 of type (2, 2, 2, 2, 0, 0) is a WNM
algebra if and only if (A,∧,∨,⊥,>) is a bounded lattice, with
top > and bottom ⊥, 〈A,�,>〉 is a commutative monoid, and
it satisfies the residuation equation, x � y ≤ z if and only if
x ≤ y → z, the prelinearity equation (x→ y)∨(y → x) = >,
the weak nilpotent minimum equation ¬(x� y) ∨ ((x ∧ y)→
(x � y)) = >. Therefore, WNM algebras are a class of
involutive residuated lattices. When the lattice order is total, A
is called a chain. A WNM algebra that satisfies the involutivity
equation (x → ⊥) → ⊥ = x is called NM algebra, while a
Gödel algebra is an WNM algebra that satisfies idempotency,
that is x� x = x. Negation ¬x is usually defined by x→ ⊥.
An NM algebra satisfying ¬(¬x2)2 ↔ (¬(¬x)2)2 = > is
called a NM− algebra. Given an element x of a NM algebra
A, we say that x is negative when x < ¬x, x is positive when
x > ¬x. We call x a negation fixpoint when x = ¬x. Note
that if A has a negation fixpoint, then it is unique.

The variety NM of NM algebras is generated by the stan-
dard NM algebra [0,1] = 〈[0, 1],∧[0,1],∨[0,1],�[0,1],→[0,1]

, 0, 1〉 where �[0,1] is the NM t-norm (2), x ∧[0,1] y =
min{x, y}, x ∨[0,1] y = max{x, y} and

x→[0,1] y =

{
1 if x ≤ y
max{¬x, y} otherwise.

(4)

for every x, y ∈ [0, 1].

By the subdirect representation theorem [6] and the fact
that subdirectly irreducible MTL algebras are chains [12],
every NM algebra A is isomorphic to a subdirect product of a

family (Ci)i∈I of NM chains, for some index set I . When A
is finite and not trivial, then the family (Ci)i∈I of non trivial
chains is essentially unique up to reordering of the finite index
set I . Hence, there exist πi : A → Ci such that πi(a) = ai
for every a ∈ A. We call ai the ith-projection of a. Then, we
can display every element a in A by means of its projections
(ai)i∈I .

Since every finite NM chain C = 〈C,�,→,∨,∧,⊥,>〉 is
a subalgebra of [0,1], then by (2) and (4) and the fact that
¬[0,1]x := x→[0,1] 0, we have

x� y =

{
min(x, y) x > ¬y;
⊥ x ≤ ¬y. (5)

x→ y =

{
> x ≤ y;
max(¬x, y) x > y.

(6)

for all x, y ∈ C.

Note that, given a NM chain C, every x ∈ C is either
positive, negative or a negation fixpoint.

Denote by FORMn the set of all well-formed formulæ
of NM logic whose propositional variables are contained in
{x1, ..., xn}. Let A be a NM algebra, with a1, ..., an ∈ A,
and let ϕ ∈ FORMn. By ϕA(a1, ..., an) we denote the element
of A obtained by the evaluation of ϕ in A interpreting every
xi with the corresponding ai, in particular xAi = ai. With this
notation a formula ϕ is a tautology of NM logic if and only
if for every algebra A ∈ NM and for every a1, ..., an ∈ A,
ϕA(a1, ..., an) = >A. Moreover, given two logical formulæ
ϕ and ψ, we say that they are logically equivalent if and
only if (ϕ ↔ ψ)A = >A, for every A ∈ NM. In symbols,
ϕ ≡ ψ. Note that ≡ is an equivalence relation. The algebra
whose elements are the equivalence classes of formulæ of NM
logic with respect to ≡ is called the Lindenbaum Algebra of
NM and its elements are denoted [ϕ]≡. The free n-generated
algebra NMn in NM is the Lindenbaum algebra of the logical
formulæ over the first n variables. Since [0,1] is generic for
NM, then NMn is isomorphic to the subalgebra of [0, 1][0,1]

n

generated by the projection functions (a1, . . . , an) 7→ ai. It
follows that there exists a map from equivalence classes of
formulæ [ϕ]≡ to real-valued functions f : [0, 1]n → [0, 1].

Given a finite poset F and S ⊆ F , the lower set of S is
↓ S = {x ∈ F | x ≤ y for some y ∈ S}, and the upper set of
S is ↑ S = {x ∈ F | x ≥ y for some y ∈ S}. A forest is a
finite poset such that for every x ∈ F the lower set ↓ {x} is
a chain. A forest with a bottom element is called a tree, and
its bottom element is called root.

Let A be a finite NM algebra. A nonempty subset S of
A is called a filter of A when S is an upper set, and for
all x, y ∈ S then x � y ∈ S . Since S is finite, then it has
a minimum element

∧
x∈S x (that is, S is principal). We call

generator of S the minimum element of the filter S. A filter S
of A is prime if S 6= A and for all x, y ∈ A, x∨y ∈ S implies
x ∈ S or y ∈ S. Note that, for every prime filter S of A, its
generator is an idempotent join irreducible element of A. We
consider the reverse inclusion as a partial order between prime
filters, that is S ≤ S′ if and only if S′ ⊆ S, for every couple
of filters S and S′.

Proposition II.1 ([2]). The set of prime filters of NMn

ordered by reverse inclusion is a forest.



As a direct consequence of Proposition II.1, when S is
generated by a minimal idempotent join irreducible elements of
NMn, then S is the root of a tree in the forest of prime filters
of NMn. In such case, following the classical terminology,
we say that S is maximal (with respect to the inclusion among
filters).

We conclude the Section with a simple Lemma 2 that will
be useful in the following.

Lemma II.2. Let 2 and 3 be the two-elements and the three-
elements NM chains, respectively. Then, given a finite NM
algebra A and a maximal prime filter p, the quotient A/p
is either isomorphic to 2, or isomorphic to 3.

Proof: Let (Ci)i∈I be the subdirect representation of A,
and let p ∈ A be the join irreducible element that generates
p. Note that since p is maximal and prime, then p is minimal
and idempotent.

Since p is join irreducible then there exists only one j ∈ I
such that pj 6= ⊥j . Moreover, pj > ¬pj , for else pj�pj = ⊥j ,
in contradiction with the idempotency of p. Finally, since p is
minimal, pj is the least positive element in Cj . Moreover, if
Cj does not have a negation fixpoint f , ¬pj is the greatest
negative element in Cj , otherwise f covers ¬pi.

Denote with ∼p the congruence associated to p. By the
above discussion, if Cj does not have a negation fixpoint then
NMn/p is isomorphic to the two element NM chain [p]∼p >
[¬p]∼p . Otherwise, if Cj has a negation fixpoint f then A/p
is isomorphic to the three element NM chain [p]∼p > [f ]∼p >
[¬p]∼p .

III. VALUATIONS IN NM LOGIC

Since NMn is a finite distributive lattice whose elements
are formulæ in n variables, up to logical equivalence, we can
extend the scope of valuations to formulæ, as follows.

Definition III.1. Let ν : NMn → R be a valuation on
the finite distributive lattice NMn. The valuation ν(ϕ) of a
formula ϕ ∈ FORMn is the number ν([ϕ]≡).

As mentioned in the introduction, one of the goals of
[10] is the interpretation of the logical meaning of the Euler
characteristic on Gödel algebras. In that specific case, it turns
out that the Euler characteristic of a formula ϕ coincide with
the number of Boolean assignments satisfying ϕ.

Turning now to the case of NM-algebras, we can hope
that the Euler characteristic χ(ϕ) of a formula ϕ encodes
information about assignments making ϕ true. At least, this
should work for the join irreducible elements of NMn. But,
unfortunately, this is not the case. Indeed, take, for instance,
the formula

α = (X ↔ ¬X)2 ∧X .

A straightforward verification shows that for every assign-
ments µ : FORM1 → [0, 1], µ(α) < 1. Moreover [α]≡ is a

2We thank the anonymous referee for pointing out that Lemma II.2 can be
generalized to any NM-algebra, and not just to finite ones. This follows from
the fact that the quotient by a maximal filter is a simple algebra and that up
to isomorphism the only simple NM-algebras are 2 and 3.

join irreducible element of NM1. Indeed, one can check that
for every formula ψ ∈ FORM1 such that [ψ]≡ ≤ [α]≡, either
[ψ]≡ = [α]≡, or [ψ]≡ = ⊥. Thus, χ(α) = 1. Compare with
Fig. 1.

• •
• • •
• • •
• • •

• •
• • •
• • •
• • •

Fig. 1: NM1 is isomorphic to the product of the three depicted NM
chains ([1]). The dashed line on the left is the generator, while the
dotted line on the right is [α]≡.

Since the truth value of α is strictly lower than 1 under
any assignment, but the Euler characteristic of α is greater
than 0, we can not directly interpret χ as a measure of the
number of classes of assignments making a formula true. We
do not discuss further the rôle of Euler characteristic in NM
logic here. Instead, we provide a new valuation that, as we will
see later in this section, can be interpreted similarly to how
the Euler characteristic has been interpreted in Gödel logic in
[10].

Let us introduce such a valuation, slightly different from
the Euler characteristic, defined as follows.

Definition III.2. We define the idempotent Euler characteristic
χ+ : NMn → R as the valuation on NMn such that

1) χ+(⊥) = 0;
2) for each join irreducible element g ∈ NMn,

χ+(g) =

{
1 if g � g = g ,

0 otherwise.

Remark. Observe that, if g is a join irreducible element, but
g � g 6= g, then g � g = ⊥.

The following proposition highlights a fundamental prop-
erty of this newly defined valuation. The name given to the
valuation is due to such property.

Proposition III.3. Fix n ≥ 1. The idempotent Euler charac-
teristic satisfies, for every x ∈ NMn,

χ+(x� x) = χ+(x)

Proof: Let x ∈ NMn. Three cases are to be considered.

1) x� x = x.

2) x� x = ⊥.

3) x� x = y, with y ∈ NMn, y 6= x, and y 6= ⊥.

If 1) holds the proposition immediately follows. Suppose
2) holds. We need to prove that χ+(x) = χ+(⊥) = 0. First,
observe that for every y ∈ NMn such that y ≤ x, we have
y � y ≤ x � x. Thus, y � y = ⊥. Let G = {g1, . . . , gm}
be the poset of join irreducibles of NMn such that gi ≤ x.
Note that x =

∨m
i=1 gi. We proceed by induction on the

structure of G. If m = 1, then x is a join irreducible (an
atom of NMn), G = {x}, and χ+(x) = 0. Let m ≥ 2, and
suppose (inductive hypothesis) that the proposition holds for



every element y =
∨
g∈G′ g, with G′ ( G. Suppose x is not

a join irreducible (otherwise, the result follows by Definition
III.2). Say, without loss of generality, that gm is maximal in
G, and let y =

∨m−1
i=1 gi. By Equation (1),

χ+(x) = χ+(gm) + χ+(y)− χ+(gm ∧ y)

By Definition III.2, χ+(gm) = 0. Further, by inductive
hypothesis, χ+(y) = 0. Let G′ be the poset of join irreducible
g of NMn such that g ≤ y. Since gm is join irreducible, and
it is maximal in G, y � gm. Thus, G′ ( G. By inductive
hypothesis, χ+(gm ∧ y) = 0. We conclude χ+(x) = 0.

Suppose, finally, that 3) holds. Let z = ¬x ∧ x. By
monotonicity of �, we obtain z � z = ⊥. Thus, χ+(z) = 0.
Moreover, y ∧ z ≤ z, thus (y ∧ z)� (y ∧ z) = ⊥. Therefore,
χ+(y ∧ z) = 0. Using the subdirect representation, one can
see that x = y ∨ z. We obtain

χ+(x) = χ+(y) + χ+(z)− χ+(y ∧ z) = χ+(y) ,

and the proposition is proved.

We do not provide here an example of the values of the
idempotent Euler characteristic on a free NM algebra, because
of the dimension of such structures (NM1 has 48 elements).
However, a clarifying example is depicted in Fig. 2, for the
case of NM−1 .

Lemma III.4. Fix integer n ≥ 1, and let x ∈ NMn.
Then, χ+(x) equals the number of minimal idempotent join-
irreducible elements g ∈ NMn such that g ≤ x.

Proof: Let x ∈ NMn. If x = ⊥ the Lemma trivially
holds. Suppose x� x = ⊥, with x 6= ⊥. By Proposition III.3,
χ+(x) = 0. Observe that for all y ≤ x, y � y ≤ x � x, and
thus y � y = ⊥. That is, no idempotent element, except ⊥, is
under x, as desired.

Suppose now x � x 6= ⊥. Let F be the forest of all
idempotent join irreducible elements g ∈ NMn such that
g ≤ x. Since x � x 6= ⊥, we have F 6= ∅. Recall that
x =

∨
g∈F g. We proceed by induction on the structure of

F . If F has only one element, then F = {x}. By Definition
III.2, χ+(x) = 1, as desired.

Let now |F | > 1, let l ∈ F be a maximal element of F , let
F− = F \ {l}, and let x− be the join of the elements of F−.
Observe that x = x− ∨ l. Denote by M and M− the number
of minimal elements of F , and F−, respectively.

If l is a minimal element of F , then M = M− + 1.
Let l− = l ∧ x−. One can check (for instance, using the
subdirect representation), the l− satisfies l− � l− = ⊥. Thus,
by Proposition III.3, χ+(l−) = 0. By (1), using the inductive
hypothesis, we have χ+(x) = χ+(l) + χ+(x−) − χ+(l−) =
1 +M− − 0 =M , as desired.

If l is not a minimal element of F , then M = M−. Let
l− = l∧ x−. Clearly, the forest of idempotent join irreducible
elements under l forms a chain, we denote L. Moreover,
one easily see that the forest of idempotent join irreducible
elements under l− is the chain L \ {l}. Thus, χ+(l−) = 1.
By (1), we have χ+(x) = χ+(l) + χ+(x−) − χ+(l−) =
1 +M− − 1 =M , as desired.

Lemma III.5. Fix n ≥ 1, and let ϕ ∈ FORMn. Let O(ϕ, n)
be the set of assignments µ : FORMn → {0, 12 , 1} such that
µ(ϕ) = 1. Then, there is a bijection between O(ϕ, n) and the
set of minimal idempotent join irreducible elements g ∈ NMn

such that g ≤ [ϕ]≡.

Proof: Equipping {0, 12 , 1} with the structure of an NM
algebra, the resulting chain will be isomorphic to the three-
element NM algebra 3.

Fix an assignment µ : FORMn → {0, 12 , 1}. Then, there
exists a unique homomorphism hµ : NMn → 3 defined by

hµ([ϕ]≡) = µ(ϕ). (7)

Conversely, for every h : NMn → 3 we can define a
unique assignment µh : FORMn → {0, 12 , 1} such that

µh(ϕ) = h([ϕ]≡). (8)

This yields a bijection between assignments µ : FORMn →
{0, 12 , 1} and NM homomorphisms h : NMn → 3. In partic-
ular, consider that µh(ϕ) = 1 if and only if hµ([ϕ]≡) = 1.
Moreover, h−1µ (1) is a prime filter phµ in NMn.

By Lemma II.2 and the fact that hµ is an NM algebra
homomorphism, phµ has to be maximal. Hence, for every
µ ∈ O(ϕ, n) we can associate the minimal idempotent join
irreducible element in NMn that generates phµ .

Conversely, for every p maximal prime filter in NMn there
exists an NM algebras homomorphism hp : NMn → 3,
induced by the natural quotient map NMn → NMn/p
composed with the embedding NMn/p → 3 given by
Lemma II.2. Thanks to the bijection established by (7) and
(8), we are able to associate an assignment µhp with every
minimal idempotent join irreducible element p in NMn. And
the Lemma is settled.

Combining Lemma III.4 and Lemma III.5 we can now state
our main result.

Theorem III.6. Fix an integer n ≥ 1. For any formula
ϕ ∈ FORMn, the valuation χ+(ϕ) equals the number of
assignments µ : FORMn → {0, 12 , 1} such that µ(ϕ) = 1.

Remark. If ϕ is a tautology in NM logic, then χ+(ϕ) = 3n.

IV. VALUATIONS IN NM- LOGIC

As mentioned in Section II, NM− is the schematic ex-
tension of NM logic obtained adding the axiom ¬(¬x2)2 ↔
(¬(¬x)2)2. On the algebraic side we have that an NM algebra
is an NM− algebra if and only if it does not have a negation
fixpoint. Since Definitions III.1 and III.2 easily apply to the
NM− case, we can consider the idempotent Euler characteristic
on free n-generated NM− algebras. As we will see later in
this Section, the results we obtain in this case are interesting,
although easy corollaries of the results obtained in the previous
Section.

First of all, observe that Proposition III.3 and Lemma III.4
clearly hold on NM−n algebras. Furthermore, we can easily
adapt Lemma II.2 (and its proof) to NM−n algebras, as follows.



Lemma IV.1. Let 2 be the two-elements NM chain. Then,
given a finite NM− algebra A and a maximal prime filter p,
the quotient A/p is isomorphic to 2.

Appealing at the proof of Lemma III.5, given a maximal
prime filter p, there exists an embedding from the quotient
NM−n /p to the two-elements NM chain 2. Lemma III.5 thus
takes the following form, in the NM− case.

Lemma IV.2. Fix n ≥ 1, and let ϕ ∈ FORMn. Let O(ϕ, n)
be the set of assignments µ : FORMn → {0, 1} such that
µ(ϕ) = 1. Then, there is a bijection between O(ϕ, n) and the
set of minimal idempotent join irreducible elements g ∈ NM−n
such that g ≤ [ϕ]≡.

This fact, together with a revised version of Lemma III.4,
allow us to restate our main theorem for NM− logic.

Theorem IV.3. Fix an integer n ≥ 1. For any formula
ϕ ∈ FORMn, the valuation χ+(ϕ) equals the number of
assignments µ : FORMn → {0, 1} such that µ(ϕ) = 1.

Remark. If ϕ is a tautology in NM−, then χ+(ϕ) = 2n.

Example 1. Consider the subdirect representation of NM1

given in Fig. 1. Since the free 1-generated NM− algebra is
a subalgebra of NM1, we can obtain NM−1 by removing
the three elements NM chain (it is the only NM chain in the
subdirect product with a negation fixpoint). Indeed, NM−1 is
obtained as a product of the two 1-generated four-elements NM
chains. In Fig. 2 the order structure of NM−1 has been labelled
with the values given by the idempotent Euler characteristic.

2

2 2

1 2 1

1 1 1 1

1 0 1

0 0

0

Fig. 2: The order structure of NM−
1 . Elements are labelled with their

idempotent Euler characteristic.

V. CONCLUSION, AND FURTHER WORK

Our brief discussion on the (classical) Euler characteristic
lead to the conclusion that a proper logical meaning for such
valuations does not follow the intuition of [10]. We think a
deeper investigation deserve to be done.

Further research also has to be done in order to obtain
more expressive valuations, generalizing the idempotent Euler
characteristic. Indeed, as in the Gödel logic case, the study of
k-valued extensions of NM logic seems to be a feasible task.

Finally, an approach similar to the one presented here can
be applied to other logics lying in the same hierarchy of Gödel
and NM logics. An example is NMG logic [22], the logic

of the ordinal sum of Gödel and NM standard chains. The
study of the Euler characteristic, or some modified versions
of such valuation, on NMG algebras is a natural prosecution
of this work. In order to address the more difficult case
given by WNM logic, a useful and clarifying intermediate
step is the study of RDP logic [21]. Indeed, the structure
of join irreducible elements of RDP logic has already been
investigated in [5], while a poset representations of its free
n-generated algebras has been provided in [20].
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