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Abstract— Gödel propositional logic is the logic of the mini-
mum triangular norm, and can be axiomatized as propositional
intuitionistic logic augmented by the prelinearity axiom (α →
β) ∨ (β → α). Its algebraic counterpart is the subvariety
of Heyting algebras satisfying prelinearity, known as Gödel
algebras. A Delannoy path is a lattice path in Z2 that only uses
northward, eastward, and northeastward steps. We establish
a representation theorem for free n-generated Gödel algebras
in terms of the Boolean n-cube {0, 1}n, enriched by suitably
generalized Delannoy paths.

I. INTRODUCTION

Gödel (infinite-valued propositional) logic [1], [2], also
known as Gödel-Dummett logic, can be semantically defined
as the logic of the minimum triangular norm.

In more detail, first endow the real unit interval [0, 1] with
the operations ∧ and → defined by

x ∧ y = min (x, y) and x → y =
{

1 if x ≤ y ,
y otherwise .

Next consider the set of well formed formulas defined in the
usual manner from propositional variables Xi, i = 1, 2, . . .,
say, using the conjunction and implication connectives ∧ and
→, along with the constant ⊥. Then Gödel logic has as tau-
tologies precisely the well formed formulas α(X1, . . . , Xn)
that evaluate constantly to 1 under any [0, 1]-assignment
to the propositional variables Xi, when each connective is
interpreted as the operation denoted by the same symbol, and
the constant ⊥ is interpreted as the real number 0.

Usual derived connectives are

• α ∨ β := ((α → β) → β) ∧ ((β → α) → α)
• ¬α := α → ⊥
• � := ¬⊥

whose semantical counterparts in [0, 1] are

• x ∨ y = max (x, y)

• ¬x =
{

1 if x = 0 ,
0 otherwise.

• � = 1.

Gödel logic can be axiomatized in Hilbert style as the
intuitionistic propositional calculus augmented by the pre-
linearity axiom (α → β) ∨ (β → α). For a completeness
theorem with respect to the many-valued semantics above,
see e.g. [2, 10.1.3].

In this paper we exhibit an unorthodox semantics for Gödel
logic in terms of certain classical combinatorial objects,
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namely, Delannoy paths [3, p. 80]. Our main result is a
representation theorem for free n-generated Gödel algebras
based on such paths. In Section II we enrich the Boolean
n-cube {0, 1}n by (suitably generalized) Delannoy paths.
We then introduce Delannoy functions as a generalization of
Boolean functions. We observe that such Delannoy functions
indeed form a Heyting algebra. In Section III, we clarify
the tight connection between Delannoy paths in {0, 1}n

and [0, 1]-assignments to n propositional variables in Gödel
logic (Lemma 3.3). Finally, in Section IV, we prove that
the Heyting algebra of Delannoy functions on n variables
is the free Gödel algebra on n free generators. Our results
should be compared with [4] where, among other things, the
latter algebra is described in terms of another combinatorial
construction.

II. DELANNOY PATHS AND FUNCTIONS

According to the classical definition, a Delannoy path
is a path in Z2 that only uses northward, eastward, and
northeastward steps. We need a variant of this notion in order
to work in Boolean n-cubes. Throughout, n is a nonnegative
integer.

Definition 2.1: A Delannoy step in {0, 1}n (D-step for
short) is a pair (a, b) with a = (x1, x2, . . . , xn) ∈ {0, 1}n

and b = (y1, y2, . . . , yn) ∈ {0, 1}n, a �= b, such that yi ≤ xi,
for each i ∈ {1, . . . , n}. We denote by Sa

b the D-step (a, b).
A Delannoy path in {0, 1}n is a sequence of D-steps in
{0, 1}n of the form Sa0

a1
Sa1

a2
· · ·Sak−1

ak . We say that a0 is the
root of such a D-path. A path of k steps is a k-path. A 0-path
is a point, and we shall simply denote it by its coordinates.

Figure 1 displays some D-paths in {0, 1}3.

Definition 2.2: Let P = Sa0
a1

Sa1
a2

· · ·Sak−1
ak be a D-path.

A subpath of P is a D-path Q = Sa0
a1

Sa1
a2

· · ·Saj−1
aj , j ≤ k,

consisting of the first j steps of P . We write Q 	 P . We
denote by ⇓ P the family of all subpaths of P .

Notice that the smallest subpath of a path P with root r is
the 0-path with root r, that is, the point r. Also notice that
all subpaths of P have root r.

We denote by Pn the set of all D-paths in {0, 1}n. Using
S as a shorthand for S1

0 , we thus have

P1 = {0, 1, S} .

Note that the set of 0-paths in Pn is in bijection with the
points of {0, 1}n.

Definition 2.3: A Delannoy function is a function f :
Pn → P1 such that

f(⇓ P ) =⇓ f(P ) , for every P ∈ Pn .



Fig. 1. Some D-paths in the 3-cube.

Restricting the domain of Delannoy functions to the set of
all 0-paths we recover the classical case of Boolean functions
f : {0, 1}n → {0, 1} .

Definition 2.4: Given a Delannoy function f : Pn → P1,
the set f−1(1) = {P ∈ Pn : f(P ) = 1} is called the 1-set
of f .

Note that the 1-set f−1(1) is closed under the operation
of taking subpaths, i.e. ⇓ f−1(1) = f−1(1).

Lemma 2.5: A Delannoy function f : Pn → P1 is
uniquely determined by its 1-set.

Proof: Let P be a path in Pn, P /∈ f−1(1). Note
that there does not exist a path Q ∈ f−1(1) such that P 	
Q. We next consider two cases. Suppose there exists a path
Q ∈ f−1(1) such that Q 	 P . Then, 1 ∈ f(⇓ P ) and,
by the definition of Delannoy function, 1 ∈ ⇓ f(P ). Since
f(P ) �= 1, the only other possibility is f(P ) = S. If, on the
other hand, there is no path Q ∈ f−1(1) such that Q 	 P ,
then 1 /∈ f(⇓ P ) =⇓ f(P ). Thus, f(P ) = S cannot hold,
for else we would have ⇓ f(P ) = {1, S}. Hence, f(P ) = 0.

Consider now the set Dn of all Delannoy functions from
Pn to P1 = {0, 1, S}. Let us endow Dn with binary
operations ∧,∨,→, defined pointwise as follows, for P ∈
Pn, and f, g ∈ Dn:

TABLE I

f(P ) g(P ) (f ∧ g)(P ) (f ∨ g)(P ) (f → g)(P )

0 0 0 0 1
0 S 0 S 1
0 1 0 1 1
S 0 0 S 0

S S S S
1 if M � N ,
S otherwise.

S 1 S 1 1
1 0 0 1 0
1 S S 1 S
1 1 1 1 1

In the table above, the symbols M , N denote the 	-maximal
subpaths of P such that f(M) = g(N) = 1. Such subpaths
always exist, as one easily verifies using the definition of
Delannoy function.

The following lemma, to be used in the sequel, is promptly
established. We omit the proof for the sake of brevity.

Lemma 2.6: Dn is closed under the operations ∧,∨,→.
In particular, the constant functions c0, c1 that send every
P ∈ Pn to the element 0 ∈ P1 and 1 ∈ P1, respectively,
belong to Dn. Moreover, 〈Dn,∧,∨,→, c0, c1〉 is a Heyting
algebra.

To illustrate the Heyting algebra structure of Delannoy
functions, we derive the Hasse diagram of D1. Let us display
a function f ∈ D1 by listing the images of each element of
the domain:

(f(0) f(1) f(S)).

It is easy to verify that there are exactly six Delannoy
functions in D1, namely:

(0 0 0) , (0 1 S) , (0 1 1) , (1 0 0) , (1 1 S) , (1 1 1) .

Using Table I we can immediately compute the Hasse dia-
gram of D1. To illustrate the relationship between Delannoy
functions and Gödel logic, let us show how to associate
with each function a formula in the single variable X . To
the identity function (0 1 S) one associates the formula X .
Next notice that the function (1 0 0) can be obtained as
(0 1 S) → c0. Recalling that, as usual, negation is defined
by ¬α = α → ⊥, we can write

(1 0 0) = ¬(0 1 S).

Hence, one associates the formula ¬X with the Delannoy
function (1 0 0). Similarly, observe that (0 0 0) = (0 1 S)∧
(1 0 0) and that (1 1 S) = (0 1 S)∨ (1 0 0). The remaining
functions are promptly derived in a similar fashion. Table II
summarizes the results.1

TABLE II

(0 1 S) X
(1 0 0) ¬X
(0 0 0) X ∧ ¬X
(0 1 1) ¬¬X
(1 1 S) X ∨ ¬X
(1 1 1) ¬X ∨ ¬¬X

In Figure 2 we show the Hasse diagram of D1 with nodes
labelled by formulas as in Table II.

Note that the triplets describing Delannoy functions in D1

are ordered coordinatewise, according to the relations 0 ≤
S ≤ 1.

Direct computation using Delannoy functions shows that
D2 has 342 elements. (A recursive formula for the size of
Dn can be found in [6], [7].)

1We remark that the analogous tables for more than one variable must
mention the implication connective. Indeed, → is not definable from
∧,∨,¬,⊥,� in Gödel logic [5].



Fig. 2. The Heyting algebra D1.

III. ASSIGNMENTS VS. DELANNOY PATHS

Let (P,≤) be a partially ordered set and Q ⊆ P . Recall
that the downset of Q is

↓ Q = {p ∈ P | p ≤ q, for some q ∈ Q}.
We write ↓ p for ↓ {p}. A partially ordered set (P,≤) is
a forest if for all q ∈ P the downset ↓ q is a chain (i.e., a
totally ordered set). A tree is a forest with a bottom element,
called the root of the tree. A subforest of a forest P is the
downset of some Q ⊆ P .

Unions and intersections of subforests are again subforests.
Following [8], we define an implication between subforests
by

F1 → F2 = {p ∈ P | ↓ p ∩ F1 ⊆ ↓ p ∩ F2}, (1)

where F1 and F2 are subforests of (P,≤). It is easy to check
that F1 → F2 indeed is a subforest of (P,≤).

We now note that the set of Delannoy paths, Pn, is
partially ordered by the subpath relation, 	, and is in fact a
forest. In Figure 3 we display (P2,	).

Fig. 3. The forest P2.

We next turn to assignments and their relationship with
forests of Delannoy paths.

Let us consider well formed formulas over propositional
variables Xi, i = 1, 2, . . . . As is standard, by an assignment
we mean a function µ from well formed formulas to [0, 1] ⊆
R such that, for any two such formulas α, β,

• µ(α ∧ β) = min{µ(α), µ(β)}.
• µ(α ∨ β) = max{µ(α), µ(β)}.

• µ(α → β) =
{

1, if µ(α) ≤ µ(β),
µ(β), otherwise.

• µ(¬α) =
{

1, if µ(α) = 0,
0, otherwise.

• µ(⊥) = 0
• µ(�) = 1

Definition 3.1: We say that two assignments µ and ν are
equivalent over the first n variables, or n-equivalent, written
µ ≡n ν, if and only if, for all i, j ∈ {1, . . . , n}, the following
conditions hold:

(a) µ(Xi) = 0 ⇐⇒ ν(Xi) = 0,
(b) µ(Xi) = 1 ⇐⇒ ν(Xi) = 1,
(c) µ(Xi) = µ(Xj) ⇐⇒ ν(Xi) = ν(Xj),
(d) µ(Xi) < µ(Xj) ⇐⇒ ν(Xi) < ν(Xj).

Clearly, ≡n is an equivalence relation; let us write Fn for
the (finite) set of equivalence classes of ≡n. The significance
of this definition is that equivalent assignments cannot be told
apart by the formulas they make true. Indeed, it is not difficult
to show that if α(X1, . . . , Xn) is a well formed formula in
Gödel logic, and µ, ν are two n-equivalent assignments, then

µ(α(X1, . . . , Xn)) = 1 ⇐⇒ ν(α(X1, . . . , Xn)) = 1.

We further define a partial order on Fn.

Definition 3.2: Let [µ]≡n and [ν]≡n be two equivalence
classes of assignments. We define [µ]≡n ≤ [ν]≡n if and only
if, for all i, j ∈ {1, . . . , n}, the following conditions hold:

(i) µ(Xi) = 0 ⇐⇒ ν(Xi) = 0,
(ii) µ(Xi) < 1 =⇒ ν(Xi) < 1,
(iii) µ(Xi) = µ(Xj) < 1 =⇒ ν(Xi) = ν(Xj),
(iv) µ(Xi) < µ(Xj) =⇒ ν(Xi) < ν(Xj).

One checks that ≤ in Definition 3.2 indeed is a partial or-
der on Fn. In fact, (Fn,≤) and (Pn,	) are order-isomorphic,
as we now show.

Let us construct a function F : Pn → Fn. Given a path
P = Sa0

a1
Sa1

a2
· · ·Sak−1

ak ∈ Pn, let a0 = (y1, . . . , yn), ak =
(z1, . . . , zn) ∈ {0, 1}n. Then F (P ) = [µ]≡n is defined as
follows:
(Variables set to 0 and 1.) For i ∈ {1, . . . , n}

µ(Xi) =




0 if yi = 0;
1 if zi = 1;
0 < µ(Xi) < 1 if yi = 1 and zi = 0.

(Order between variables.) For each pair of indices i, j ∈
{1, . . . , n} such that yi = yj = 1 and zi = zj = 0 there
is a unique D-step, say S

ar−1
ar , in which the ith coordinate

decreases, and a unique D-step, say S
as−1
as , in which the jth

coordinate decreases. Then:



• if r < s then µ(Xi) < µ(Xj);
• if r = s then µ(Xi) = µ(Xj);
• if r > s then µ(Xi) > µ(Xj).

For example, if we take P = S111
110S110

100 ∈ P3, then [µ]≡3 =
F (P ) is the class of those assignments such that

0 < µ(X3) < µ(X2) < µ(X1) = 1.

Lemma 3.3: The function F : Pn → Fn is a bijection.
Moreover, for all P ∈ Pn,

F (⇓ P ) =↓ F (P ). (2)

In particular, (Fn,≤) is a forest.
Proof: For each [µ]≡n ∈ Fn, we show how to construct

a unique path P ∈ Pn such that F (P ) = [µ]≡n . Let π be a
permutation of the indices 1, . . . , n such that

0 ≤ µ(Xπ(1)) ≤ µ(Xπ(2)) ≤ · · · ≤ µ(Xπ(n)) ≤ 1.

Let r0 = 0 if µ sets no variable to 0, and

r0 = max{j ∈ {1, . . . , n} | µ(Xπ(j)) = 0}
otherwise. Similarly, let s = n + 1 if µ sets no variable to
1, and

s = min{j ∈ {1, . . . , n} | µ(Xπ(j)) = 1}
otherwise. To construct P , first note that the only possible
choice for the root a0 = {x0

1, . . . , x
0
n} is

x0
j =

{
0 if r0 ≥ 1 and j ∈ {π(1), . . . , π(r0)};
1 otherwise.

Therefore, if s = r0 + 1, then P is the 0-path a0. Other-
wise, P must have at least one step, say Sa0

a1
with a1 =

{x1
1, . . . , x

1
n}. Upon setting

r1 =max{j∈{r0 + 1, . . . , s − 1}|µ(Xπ(j))=µ(Xπ(r0+1))},
direct inspection shows that a1 is uniquely determined as:

x1
j =

{
0 if j ∈ {π(1), . . . , π(r1)};
1 if j ∈ {π(r1 + 1), . . . , π(n)}.

If now s = r1 + 1, then P is the 1-path Sa0
a1

. Otherwise,
iterate the construction.

It remains to show (2). But since F is a bijection, to prove
(2) suffices to show that F is order preserving. To this end
let P be a k-path of Pn and Q an h-subpath of P . Let
F (P ) = [µ]≡n and F (Q) = [ν]≡n . We only need to show
[ν]≡n ≤ [µ]≡n , according to Definition 3.2. We immediately
notice by the first clause in the definition of F that

µ(Xj) = 0 ⇐⇒ ν(Xj) = 0,

for each j = 1, . . . , n and (i) in Definition 3.2 is verified.
Similarly, one checks that (ii) in Definition 3.2 is satisfied.
Moreover, if ν(Xr) = ν(Xs) < 1, for r, s ∈ {1, . . . , h},
then there is a step in Q in which the rth and the sth

coordinates decrease together. The same step belongs to P ,
hence µ(Xr) = µ(Xs) < 1, and Condition (iii) is verified.
Finally, if ν(Xr) < ν(Xs) then there is a step of Q in which

the rth coordinate decreases while the sth keeps its value 1.
Since this step also is in P , µ(Xr) < µ(Xs) and the last
condition in Definition 3.2 is met.

In Figure 4 we display (F2,≤); compare with Figure 3.

Fig. 4. The forest F2.

IV. MAIN RESULT

Let us denote by Sub(Fn) the set of all subforests of Fn.
Recall from Section II that Sub(Fn) comes equipped with
operations ∩,∪,→. Moreover, the lattice 〈Sub(Fn),∩,∪〉
has Fn and ∅ as top and bottom, respectively.

Certain subforests of Fn correspond to propositional vari-
ables.

Definition 4.1: For each i = 1, . . . , n, we define

χi = {[µ]≡n | µ(Xi) = 1}
to be the ith generating subforest of Fn.

We prepare a lemma.

Lemma 4.2: 〈Sub(Fn),∩,∪,→, ∅, Fn〉 is a Gödel algebra
freely generated by the generating subforests.

Proof: The proof is a straightforward translation of [7,
Remark 2 and Proposition 2.4] in the language of assign-
ments (Section III).

The Delannoy analog of generating subforests are projec-
tion functions:

Definition 4.3: Let P = Sa0
a1

Sa1
a2

· · ·Sak−1
ak ∈ Pn. Let

a0 = (x1, x2, . . . , xn) and ak = (y1, y2, . . . , yn). We define
the projection functions πi : Pn → P1, i ∈ {1, . . . , n} by

πi(P ) =




0 if xi = 0;
1 if yi = 1;
S if xi = 1 and yi = 0.

One immediately checks that each projection function is
a Delannoy function.

We are now ready to prove our main result.

Theorem 4.4: 〈Dn,∧,∨,→, c0, c1〉 is a Gödel algebra
freely generated by the projection functions π1, . . . , πn.

Proof: By Lemma 2.6, 〈Dn,∧,∨,→, c0, c1〉 is a Heyt-
ing algebra.



Let us define a function ϕ : Dn → Sub(Fn) as follows.
Given f ∈ Dn, let U ⊆ Pn be the 1-set of f , that is, U =
{P ∈ Pn : f(P ) = 1}. Let

f ∈ Dn
ϕ�→ F (U) ∈ Sub(Fn),

where F : Pn → Fn is as in Lemma 3.3. In plain words,
ϕ(f) is the family of those classes [µ]≡n which are images
under F of a path P ∈ U . By Lemma 3.3, it follows that
F (U) ∈ Sub(Fn), hence ϕ is well defined. Moreover, by
the same Lemma, F is a bijection. Since f is uniquely
determined by its 1-set (Lemma 2.5), ϕ is a bijection too.

We need to show that ϕ preserves operations. That
ϕ(c0) = ∅ and ϕ(c1) = Fn is immediately seen. Let P ∈ Pn

and F (P ) = [µ]≡n ∈ Fn. Note that the intersection of the
1-sets of f and g is precisely the 1-set of f ∧ g. Therefore,

[µ]≡n ∈ ϕ(f ∧g) ⇐⇒ [µ]≡n ∈ ϕ(f) and [µ]≡n ∈ ϕ(g) ⇐⇒
⇐⇒ [µ]≡n ∈ ϕ(f) ∩ ϕ(g),

and ϕ preserves ∧. Similarly, ϕ preserves ∨.

Concerning implication, we recall from (1) that ϕ(f) →
ϕ(g) is the set of all classes [µ]≡n ∈ Fn such that A ⊆ B,
where

A = {[λ]≡n ∈ ϕ(f) | [λ]≡n ≤ [µ]≡n},
and

B = {[λ]≡n ∈ ϕ(g) | [λ]≡n ≤ [µ]≡n}.
As before, consider P ∈ Pn with F (P ) = [µ]≡n . The proof
requires a case-analysis to cover each row in Table I.

Suppose f(P ) = g(P ) = S (row 5). In this case, [µ]≡n /∈
ϕ(f), and [µ]≡n /∈ ϕ(g). Let M , N be the 	-maximal
subpaths of P such that f(M) = g(N) = 1. If M 	 N , then
[µ]≡n ∈ ϕ(f → g). Moreover, M 	 N implies A ⊆ B, and
[µ]≡n ∈ ϕ(f) → ϕ(g). On the other hand, if N � M , then
[µ]≡n /∈ ϕ(f → g). In this case, F (N) ∈ B, but F (N) /∈ A.
Thus, A � B, and [µ]≡n /∈ ϕ(f) → ϕ(g). In each case,
implication is preserved.

Next suppose f(P ) = 0 (rows 1−3). Then [µ]≡n /∈ ϕ(f).
Furthermore, (f → g)(P ) = 1 and then [µ]≡n ∈ ϕ(f → g).
By Definition 2.3, ⇓ f(P ) = {0} = f(⇓ P ). This means
that, for all paths Q 	 P , f(Q) = 0, hence F (Q) /∈ ϕ(f).
By Lemma 3.3, Q 	 P if and only if F (Q) ≤ F (P ).
Thus, A is empty, A ⊆ B, and [µ]≡n ∈ ϕ(f) → ϕ(g).
The remaining cases are dealt with in a similar fashion.

We have proved that 〈Dn,∧,∨,→, c0, c1〉 is isomorphic
to 〈Sub(Fn),∩,∪,→, ∅, Fn〉 via ϕ. It remains to show that
ϕ carries projection functions to generating subforests (see
Figure 5 for an example).

Let therefore πi : Pn → P1 be a projection function, and let
P = Sa0

a1
Sa1

a2
· · ·Sak−1

ak ∈ Pn, ak = (y1, y2, . . . , yn). Then,
P is in the 1-set of πi if and only if yi = 1. In this case,
[µ]≡n = F (P ) is such that µ(Xi) = 1. Thus, [µ]≡n is in
the generating subforest χi ⊆ Fn. Hence, ϕ maps πi to
χi ∈ Sub(Fn), and the proof is complete.

Fig. 5. χ1 = ϕ(π1).

V. CONCLUSIONS

In this paper, we have introduced a semantics for Gödel
logic based on the combinatorial notion of Delannoy paths.
As an example of further work along these lines, we mention
the computation of coproducts of Gödel algebras exploiting
the geometry of Delannoy paths, as an alternative to the
ordered partitions used in [7].
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and Nilpotent Minimum logics,” in ECSQARU 2005, Proceedings, ser.
Lecture Notes in Computer Science, vol. 3571. Springer, 2005, pp.
662–674.
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