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aDipartimento di Informatica, Università degli Studi di Milano, via Comelico 39, I-20135
Milano, Italy

bDipartimento di Matematica “Federigo Enriques”, Università degli Studi di Milano, via
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with Gödel-Dummett logic and Ruspini partitions, we show here that  Lukasie-
wicz logic is able to express the notion of pseudo-triangular basis of fuzzy sets, a
mild weakening of the standard notion of triangular basis. En route to our main
result we obtain an elementary, logic-independent characterisation of triangular
bases of fuzzy sets.

Keywords:  Lukasiewicz logic, Fuzzy sets, Triangular bases, Abstract Schauder
bases, Axiomatisations.
2010 MSC: 03B50, 03B52

Contents

1 Prologue. 2

2 Properties of fuzzy sets. 4

3 Characterisation of pseudo-triangular bases of fuzzy sets. 7

4 Intermezzo:  Lukasiewicz logic. 9

5 From functions to logic: theories induced by fuzzy sets. 12

6 How to axiomatise a pseudo-triangular basis of fuzzy sets. 13

7 Epilogue. 16

∗Corresponding author.
∗∗Partially supported by Dote ricerca — FSE, Regione Lombardia.

Email addresses: codara@di.unimi.it (Pietro Codara), dantona@di.unimi.it (Ottavio
M. D’Antona), vincenzo.marra@unimi.it (Vincenzo Marra)

Preprint submitted to Fuzzy Sets and Systems October 30, 2012



1. Prologue.

In this paper, by a fuzzy set we always mean a function f : [0, 1] → [0, 1],
with [0, 1] ⊆ R, the real unit interval. Throughout, we fix an integer n > 0, and
a finite, non-empty family

P = {f1, . . . , fn}

of fuzzy sets. We further always assume that each fi ∈ P is a continuous
function with respect to the usual (Euclidean) topology of [0, 1].

We address here the general question, what is the logical content of the
family of fuzzy sets P . By way of motivation, let us think of the real unit
interval [0, 1] as the normalised range of values of a physical observable, say
temperature. Then each fi ∈ P can be viewed as a means of assigning a
truth value to a proposition about temperature in some many-valued logic L .
Had one no information at all about such propositions, one would be led to
identify them with propositional variables Xi, subject only to the axioms of L .
Intuitively, however, the set P does encode information about X1, . . . , Xn. For
example, consider P = {f1, f2, f3} as in Fig. 1, and say f1, f2, and f3 provide
truth values for the propositions X1 = “The temperature is low”, X2 = “The
temperature is medium”, and X3 = “The temperature is high”, respectively.
The shape of the functions in P intuitively tells us that it is never the case
that the observed temperature is both low and high. More generally, at an
intuitive level it is clear that P encodes a body B of knowledge about the specific
application domain (here, about temperature). How can we make this intuition
precise?

If L has a conjunction ∧ interpreted by minimum, the proposition X1 ∧X3

has 0 as its only possible truth value, i.e. it is a contradiction. The chosen set
P then leads us to add extra-logical axioms to L —e.g. ¬(X1 ∧ X3), where ¬
is a negation connective—in an attempt to express the fact that one cannot
observe both a high and a low temperature at the same time. More generally,
we see that P implicitly encodes a theory ΘP over the pure logic L —a theory
being a family of formulæ required to hold, thought of as extra-logical axioms.
Crucially, the theory ΘP is determined independently of the specifics of the
available connectives. Set

ΘP = {ϕ(X1, . . . , Xn) | ϕ(f1(x), . . . , fn(x)) = 1 for all x ∈ [0, 1]} . (*)

(Here, ϕ is a formula of L over the variables X1, . . . , Xn, and ϕ(r1, . . . , rn)
denotes the evaluation of ϕ at (r1, . . . , rn) ∈ [0, 1]n.) Under the sole assumption
that L has a sound [0, 1]-valued semantics, it is easy to show that ΘP as in (*)
is a (deductively closed) theory over L ; see Lemma 5.1 below.

In traditional terminology, the axioms of the logic L (along with their de-
ductive consequences) are to be thought of as analytic truths, which hold true by
virtue of their form alone, independently of the circumstances. Analytic truths
are the subject matter of logic proper; however, by their very nature, they carry
no information about “the world”: whichever analytic truth one utters about
temperature, one can equally well utter about, say, pressure. By contrast, the
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additional formulæ, or extra-logical axioms, that feature in a theory are to be
thought of as synthetic truths—assertions that are truthful only within a specific
domain of application, by virtue of properties of that domain. So, for example,
in dealing with a certain (ideal) gas one may wish to assert as a physical (hence
extra-logical) truth that the product of the volume and the pressure is constant
at constant temperature. But there is of course no way of deducing such a state-
ment from the axioms of classical logic: a world in which this specific law fails is
conceivable, i.e. is logically consistent, and hence whatever the truth expressed
by the law, it is a factual, or contingent, or synthetic truth. The completeness
theorem then tells us that the statement in question is not formally derivable
from the axioms of classical logic, because it has a counter-model, namely, the
possible world wherein it fails. In this precise sense, logic can teach us nothing
(factual): good grades in logic won’t help with your physics class.

In light of the foregoing, we now see how to relate the two statements:

(S1) P determines a theory ΘP over L , and

(S2) P encodes a body B of knowledge about the specific application domain.

Indeed, ΘP is none other than a verbalisation of B: an exposition of B in
formulæ, so to speak. But while (S1) does provide the desired clarification of
the intuition (S2), ΘP may end up being a mere approximation to B; after all,
the linguistic resources offered by L are limited. The differential relationship
between acceleration and velocity, for example, is hardly exactly expressible
within most formal system that go under the name of “logics”.

In this paper we are concerned with one instance of the general problem
of making explicit the extra-logical information implicitly encoded by P . In a
previous paper [9] (see also [8]), we addressed and solved this problem in case
the background logic L is Gödel-Dummett (infinite-valued propositional) logic
[13, Chapter 4], and P is assumed to be a Ruspini partition, i.e. such that∑n
i=1 fi(x) = 1 for each x ∈ [0, 1]. There, we proved that Gödel-Dummett logic

can only capture the semantical notion of Ruspini partition up to an equiv-
alence relation that we determined exactly. Here, we address the problem of
identifying the synthetic, factual content of triangular bases of fuzzy sets, a no-
tion strictly stronger than Ruspini partitions. Such triangular bases commonly
occur in applications. The set P = {f1, f2, f3} provides an example; please see
Definition 2.2 below for details. Throughout the paper, we will take L to be
 Lukasiewicz (infinite-valued propositional) logic [5]; background is provided in
Section 4. It is well known that  Lukasiewicz logic is able to express addition
of real numbers exactly, and so does axiomatise Ruspini partitions exactly. We
shall prove in Theorem II of Section 6 the stronger result that  Lukasiewicz logic
axiomatises the notion of triangular bases of fuzzy sets almost exactly; specifi-
cally, the logic axiomatises pseudo-triangular bases (see Definition 2.2), a mild
weakening of triangular bases. It will transpire that the reason why the latter
cannot be characterised exactly is that the logic does not express (affine) lin-
earity, though, as mentioned, it does express addition. Besides a fair amount of
standard machinery in  Lukasiewicz logic, the proof of Theorem II uses Theorem
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I, which we prove in Section 3. Here we characterise pseudo-triangular bases of
fuzzy sets by elementary properties of the set of functions P which strengthen
the Ruspini condition. In the final Section 7 we discuss further research, and
connections with previous work on the algebraic semantics of  Lukasiewicz logic.

2. Properties of fuzzy sets.

Fuzzy sets are often required to satisfy additional conditions that are deemed
useful for the specific application under consideration. Here is a popular one
that we already mentioned in the Prologue, and is usually traced back1 to [22,
p. 28]. We say P is a Ruspini partition if for all x ∈ [0, 1]

n∑
i=1

fi(x) = 1 . (1)

We further say that P is 2-overlapping if for all x ∈ [0, 1] and all triples of
indices i1 6= i2 6= i3 one has

min {fi1(x), fi2(x), fi3(x)} = 0 . (2)

Figure 1 shows a family of fuzzy sets which is both Ruspini and 2-overlapping.

Figure 1: A Ruspini and 2-overlapping family of fuzzy sets.

The Ruspini and the 2-overlapping conditions (1–2) apply to a family of
fuzzy sets. In the literature, several properties applicable to a single fuzzy set
have been considered too. One of these we are assuming throughout, as stated
at the beginning; namely, continuity. Further, a fuzzy set f : [0, 1] → [0, 1] is
normal if there exist x ∈ [0, 1] such that f(x) = 1. If, moreover, f(y) 6= 1
for all y ∈ [0, 1] with y 6= x, we say that f is strongly normal. The fuzzy sets
f1, f2, and f3 depicted in Figure 1 are strongly normal. The last property we
wish to consider is convexity. Following [11, p. 25], it is common to consider a

1Let us mention in passing that Ruspini partitions have been long studied in general
topology, where they are known as (finite) partitions of unity; see e.g. the survey [12], and
references therein.
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(a) A strictly min-convex
fuzzy set.

(b) A non-min-convex
fuzzy set.

Figure 2: Min-convexity.

weaker form of convexity than the classical one. The fuzzy set f : [0, 1]→ [0, 1]
is min-convex 2 if for all x, y, λ ∈ [0, 1],

f(λx+ (1− λ)y) ≥ min(f(x), f(y)), (3)

and it is strictly min-convex if

f(λx+ (1− λ)y) > min(f(x), f(y)). (4)

We shall make crucial use of a localised version of min-convexity in our results.
Let us call Sf = {x ∈ [0, 1] | f(x) > 0} the support of f . We say f is min-
convex on its support if (3) holds for each x, y ∈ [0, 1] such that [x, y] ⊆ Sf . We
define the notion of strict min-convexity of f on its support in the same manner,
mutatis mutandis.

A min-convex fuzzy set is shown in Figure 2(a); a non-min-convex fuzzy set
is shown in Figure 2(b).

Lemma 2.1. A fuzzy set f : [0, 1]→ [0, 1] is min-convex if, and only if, for any
0 ≤ x < z < y ≤ 1 we have that

if f(z) < f(x) then f(y) ≤ f(z) .

Moreover, f is strictly min-convex if, and only if, for any 0 ≤ x < z < y ≤ 1
we have that

if f(z) ≤ f(x) then f(y) < f(z) .

Proof. This is a straightforward verification.

There is one last property of fuzzy sets that we consider in this paper:

Definition 2.1. A finite family P = {f1, . . . , fn} of fuzzy sets is separating if
for all x, y ∈ [0, 1], with x 6= y, {f1(x), . . . , fn(x)} 6= {f1(y), . . . , fn(y)}.

2We adopt this terminology to avoid confusion with convexity proper.
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It may be remarked that many families of fuzzy sets that have been investigated
in the literature, or have been used in implementations, indeed are separating
— the set in Figure 1 being a typical instance. We shall see in due course that
the property is a crucial feature of such examples, cf. Theorem II below.

Instead of asking that P (or its members) satisfy a given general property
such as the ones above, we can decide to restrict the choice of fuzzy sets to
a prototypical class of functions. So, for example, a fuzzy system might use
sigmoid, or triangular, or trapezoidal functions only. In the case of triangular
functions, moreover, it is common to require that the various fuzzy sets fit
together nicely, as in the following definition that is central to our paper.

Definition 2.2. A finite family P = {f1, . . . , fn} of continuous fuzzy sets is a
pseudo-triangular basis if there exist 0 = t1 < t2 < · · · < tn−1 < tn = 1 such
that (up to a permutation of the indices) for each i = 1, . . . , n− 1

a) fi(ti) = 1, fi(ti+1) = 0,

b) fj(x) = 0, for x ∈ [ti, ti+1], j 6= i, i+ 1,

c) fi+1(x) = 1− fi(x), for x ∈ [ti, ti+1], and

d) fi, fi+1 are bijective when restricted to [ti, ti+1].

Further, P is a triangular basis if the following condition holds in place of d).

d∗) fi, fi+1 are linear over [ti, ti+1].

See Figure 3 for an example of a pseudo-triangular basis of fuzzy sets.

Figure 3: A pseudo-triangular basis.

Remark 1. It is straightforward to prove that a finite family {f1, . . . , fn} of
continuous fuzzy sets is a triangular basis if, and only if, there exist real numbers
0 = t1 < t2 < · · · < tn−1 < tn = 1 such that (up to a permutation of the indices)
for each i = 1, 2, . . . , n,

i) fi(ti) = 1,

ii) fi(tj) = 0, for j 6= i, and

iii) fi is linear on each interval [tk, tk+1], k = 1, . . . , n− 1.

The conditions in Definition 2.2 are somewhat more involved in order to capture
instances that are not locally linear, as in Figure 3.
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3. Characterisation of pseudo-triangular bases of fuzzy sets.

We define a continuous map

TP : [0, 1]→ [0, 1]n

associated with P by
t 7→ (f1(t), . . . , fn(t)) .

We write ranTP = TP ([0, 1]) for the range of TP .

Recall3 that the fundamental simplex in Rn, denoted by ∆n, is the convex
hull of the standard basis of Rn; the latter is denoted {e1, . . . , en}. In symbols,

∆n = Conv {e1, . . . , en} .

A face of dimension k of ∆n is a subset Conv {ei1 , . . . , eik+1
} ⊆ ∆n, for 1 ≤ i1 <

i2 < · · · < ik+1 ≤ n. A vertex is a 0-dimensional face. The 1-skeleton of ∆n,

written ∆
(1)
n , is the collection of all faces of ∆n having dimension not greater

than 1.4

We say ranTP is a Hamiltonian path if there is a permutation π : {1, . . . , n} →
{1, . . . , n} such that

ranTP =

n−1⋃
i=1

Conv {eπ(i), eπ(i+1)} (5)

Theorem I. The following are equivalent.

i) P is a pseudo-triangular basis.

ii) P is a 2-overlapping Ruspini partition and each fi ∈ P is strongly normal,
min-convex, and strictly min-convex on its support.

iii) The map TP : [0, 1] → [0, 1]n is injective, and ranTP is a Hamiltonian

path on ∆
(1)
n .

Proof. Labels a), b), c), and d) in this proof refer to the items in Definition 2.2.

i) ⇒ iii). By b) and c), we immediately obtain that

ranTP ⊆ ∆(1)
n . (6)

By a), there exist 0 = t1 < t2 < · · · < tn = 1 such that, up to a permutation of
the indices,

TP (ti) = ei , for each i = 1, . . . , n . (7)

3For background on the few basic notions from piecewise linear geometry we use here,
please see [21].

4Thus, ∆
(1)
n happens to be a graph.
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Let us fix an interval [ti, ti+1], for some i ∈ {1, . . . , n − 1}. By (6–7) and b),
TP ([ti, ti+1]) ⊆ Conv {ei, ei+1}. Again by (7), since TP is continuous, using the
intermediate value theorem we obtain

TP ([ti, ti+1]) = Conv {ei, ei+1} . (8)

Thus,

ranTP =

n−1⋃
i=1

T ([ti, ti+1]) =

n−1⋃
i=1

Conv {ei, ei+1} ,

that is, ranTP is a Hamiltonian path.

It remains to show that TP is injective. If not (absurdum hypothesis), there
exist x, y ∈ [0, 1], with x < y such that TP (x) = TP (y). Then (8) entails that
x, y ∈ [ti, ti+1], for some i. But the fact that fi(x) = fi(y) and fi+1(x) =
fi+1(y), for x 6= y, contradicts d).

iii) ⇒ ii). Since ranTP ⊆ ∆n, we have
∑n
i=1 fi(x) = 1 for all x ∈ [0, 1],

that is, P is a Ruspini partition. Since ranTP ⊆ ∆
(1)
n , (f1(x), . . . , fn(x)) has at

most 2 non-zero coordinates, for each x ∈ [0, 1], that is, P is 2-overlapping. By

the definition of Hamiltonian path, ranTP contains all vertices of ∆
(1)
n . Thus,

each fi is normal. Since, moreover, TP is injective, each fi is strongly normal.

Up to a permutation of the indices, there exist t1 < t2 < · · · < tn−1 < tn,
such that TP (ti) = ei, for each i = 1, . . . , n. Moreover, by the intermediate
value theorem we have TP ([ti, ti+1]) ⊇ Conv {ei, ei+1}, i = 1, . . . , n − 1. But
since TP is injective it follows at once that

TP ([ti, ti+1]) = Conv {ei, ei+1}, i = 1, . . . , n− 1. (9)

Now (9) implies, for each i ∈ {2, . . . , n− 1},

fi(x) < fi(y) , for ti−1 ≤ x < y ≤ ti ; (10)

fi(x) > fi(y) , for ti ≤ x < y ≤ ti+1 ; (11)

fi(x) = 0 , for x ≤ ti−1 or x ≥ ti+1 . (12)

Indeed, (12) is immediate, and (10) follows from the injectivity of TP : if fi(x) =
fi(y) then fi−1(x) = 1 − fi(x) = 1 − fi(y) = fi−1(y), so that TP (x) = TP (y),
a contradiction. The proof of (11) is analogous. Similar arguments show that,
for each 0 ≤ x < y ≤ 1, f1(x) ≥ f1(y) and fn(x) ≤ fn(y).

We can now show that fi is min-convex, for each i = 1, . . . , n. By Lemma
2.1 it suffices to show that whenever 0 ≤ x < y < z ≤ 1, and fi(x) > fi(y),
then fi(y) ≥ fi(z). The cases i = 1 and i = n are trivial; assume 1 < i < n.
Since fi(x) > 0, we have ti−1 < x < ti+1 by (12). If x ≥ ti, by (11) and
(12), fi(y) ≥ fi(z). If x < ti, then, by (10), y > ti. Using (11–12), we obtain
fi(y) ≥ fi(z). In each case, if fi(x) > fi(y), then fi(y) ≥ fi(z). A similar
argument using (10–12) and Lemma 2.1 proves that each fi is strictly min-
convex on its support.
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ii) ⇒ i). Since each fi is strongly normal, and P is Ruspini, there exist
0 ≤ t1 < t2 < · · · < tn−1 < tn ≤ 1 such that (up to a permutation of the
indices) for each i = 1, . . . , n we have

fi(ti) = 1, fi(tj) = 0, for j 6= i . (13)

Moreover, t1 = 0, tn = 1. For suppose t1 > 0 (absurdum hypothesis). Then
fi(0) < 1 for each i = 1, . . . , n. Since

∑n
i=1 fi(0) = 1, and since P is 2-

overlapping, there are exactly two indices h > k ∈ {1, . . . , n} such that fh(0),
fk(0) > 0. Moreover, since h > 1, by (13) we have fh(t1) = 0 and fh(th) = 1.
By Lemma 2.1, we conclude that fh is not min-convex, a contradiction. Thus
t1 = 0. A similar argument shows tn = 1. Summing up, there exist 0 = t1 <
t2 < · · · < tn−1 < tn = 1 such that (13) holds. It immediately follows that a)
holds, too. In order to prove b), c), and d) let us fix an interval [ti, ti + 1], for
i = 1, . . . , n− 1.

To prove b), suppose by way of contradiction that there exists j 6= i, i + 1
such that fj(x) > 0 for some x ∈ [ti, ti+1]. Say j < i. Since, by (13), x 6= ti, ti+1,
we have that, on tj < ti < x, fj takes values fj(tj) = 1, fj(ti) = 0, fj(x) > 0.
By Lemma 2.1, fj is not min-convex, a contradiction. The argument for j > i
is analogous, and condition b) is proved.

From b) and the hypothesis that P is Ruspini, we immediately obtain c).

It remains to prove d). By (13), fi(ti) = fi+1(ti+1) = 1 and fi(ti+1) =
fi+1(ti) = 0. Moreover, since fi and fi+1 are strongly normal, and P is Ruspini,
using b) we have

0 < fi(x), fi+1(x) < 1 , for all x ∈ (ti, ti+1) . (14)

Since fi, fi+1 are continuous, by the intermediate value theorem they are surjec-
tive when restricted to [ti, ti+1]. Suppose now that there exist y < z ∈ (ti, ti+1)
such that fi(y) = fi(z) (absurdum hypothesis). Observe that, by (14), [y, z] is
contained in the support of fi and fi+1. Pick w ∈ (y, z). If fi(w) ≤ fi(y), then,
by Lemma 2.1, fi is not strictly min-convex on its support, a contradiction. If
fi(w) > fi(y), then, by c),

fi+1(w) = 1− fi(w) < 1− fi(y) = fi+1(y) = fi+1(z) .

Thus fi+1 is not strictly min-convex on its support, a contradiction. Therefore,
fi and fi+1 are injective, and d) holds.

4. Intermezzo:  Lukasiewicz logic.

 Lukasiewicz (infinite-valued propositional) logic is a non-classical many-
valued system going back to the 1920’s, cf. the early survey [14, §3], and its
annotated English translation in [23, pp. 38–59]. The standard modern refer-
ence for  Lukasiewicz logic is [5], while [19] deals with topics at the frontier of
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current research.  Lukasiewicz logic can also be regarded as a member of a larger
hierarchy of many-valued logics that was systematised by Petr Hájek in the late
Nineties, cf. [13]. Let us recall some basic notions.

Let us fix once and for all the countably infinite set of propositional variables:

Var = {X1, X2, . . . , Xn, . . .} .

Let us write ⊥ for the logical constant falsum, ¬ for the unary negation connec-
tive, and→ for the binary implication connective. (Further derived connectives
are introduced below.) The set Form of (well-formed) formulæ5 is defined
exactly as in classical logic over the language {⊥,¬,→}.

The  Lukasiewicz calculus is defined by the five6 axiom schemata

(A0) ⊥ → α (Ex falso quodlibet.)

(A1) α→ (β → α) (A fortiori.)

(A2) (α→ β)→ ((β → γ)→ (α→ γ)) (Implication is transitive.)

(A3) ((α→ β)→ β)→ ((β → α)→ α) (Disjunction is commutative.)

(A4) (¬α→ ¬β)→ (β → α) (Contraposition.)

with modus ponens as the only deduction rule. Provability is defined exactly as
in classical logic; ` α means that formula α is provable. We write L to denote
 Lukasiewicz logic.

The logical constant verum (>), the conjunction (∧), the disjunction (∨),
and the biconditional (↔) are defined as in Table 1. From the definition of
disjunction one sees that (A3) indeed asserts the commutativity of disjunction.
Other common derived connectives are reported in the same table, with their
definition. Some remarks are in order. Using the biconditional, one defines
formulæ α, β ∈ Form to be logically equivalent just in case ` α↔ β holds. The
connectives � and ⊕ are then De Morgan dual: α⊕ β is logically equivalent to
¬(¬α�¬β), and α�β is logically equivalent to ¬(¬α⊕¬β). These connectives,
known as the strong disjunction (⊕) and strong conjunction (�) of L , play a
central rôle both in Hájek’s treatment of many-valued logics [13], and in Chang’s
algebraisation of L via MV-algebras [5]. They are not idempotent, in the sense
that α⊕α and α are not logically equivalent: only the implication α→ α⊕α is
provable; dual considerations apply to �. Conjunction (∧) and disjunction (∨)
also are De Morgan dual, but they are idempotent; in fact, they are sometimes
called the lattice connectives because they induce the structure of a distributive

5A set of conventions for omitting parentheses in formulæ is usually adopted, and later
extended to derived connectives. We do not spell the details here, as the conventions are
analogous to the ones in classical logic, and are unlikely to cause confusion.

6In [5, Chapter 4] the language has no logical constants, and consequently (A0) does not
appear as an axiom. We prefer to explicitly have ⊥ in the language, and thus we add Ex falso
quodlibet to the standard axiomatisation.

10



Notation Definition Name Idempotent

⊥ – Falsum –
> ¬⊥ Verum –
¬α – Negation –

α→ β – Implication –
α ∨ β (α→ β)→ β (Lattice) Disjunction Yes
α ∧ β ¬(¬α ∨ ¬β) (Lattice) Conjunction Yes
α↔ β (α→ β) ∧ (β → α) Biconditional –
α⊕ β ¬α→ β Strong disjunction No
α� β ¬(α→ ¬β) Strong conjunction No
α	 β ¬(α→ β) But not, or Difference –

Table 1: Connectives in  Lukasiewicz logic.

lattice in the algebraic semantics of L . Finally, the connective 	 is the co-
implication, i.e. the dual to →.

If S ⊆ Form is any set of formulæ, one writes S ` α to mean that α is
provable in  Lukasiewicz logic, under the additional set of assumptions S. When
this is the case, one says that α is a syntactic consequence of S. Since each
one of (A0–A4) is a principle of classical reasoning, and since modus ponens is
a classically valid rule of inference, each formula provable in L is a theorem
of classical propositional logic. The converse is not true: most notably, it is
not hard to show that the tertium non datur law, α ∨ ¬α, is not provable in
 Lukasiewicz logic. In fact, it can be shown that the addition of α ∨ ¬α as a
sixth axiom schema to (A0–A4) yields classical logic.

By a theory in  Lukasiewicz logic one means any set of formulæ that is closed
under provability, i.e. is deductively closed. For any S ⊆ Form, the smallest
theory that extends S exists: it is the deductive closure S` of S, defined by α ∈
S` if, and only if, S ` α. A theory Θ is consistent if Θ 6= Form, and inconsistent
otherwise. A theory Θ is axiomatised by a set S ⊆ Form of formulæ if it so
happens that Θ = S`; and Θ is finitely axiomatisable if S can be chosen finite.

Let us now turn to the [0, 1]-valued semantics. An atomic assignment, or
atomic evaluation, is an arbitrary function w : Var → [0, 1]. Such an atomic
evaluation is uniquely extended to an evaluation of all formulæ, or possible
world, i.e. to a function w : Form→ [0, 1], via the compositional rules:

w(⊥) = 0 ,

w(α→ β) = min {1, 1− (w(α)− w(β))} ,
w(¬α) = 1− w(α) .

It follows by trivial computations that the formal semantics of derived connec-
tives is the one reported in Table 2. Tautologies are defined as those formulæ
that evaluate to 1 under every evaluation. Let us write � α to mean that the
formula α ∈ Form is a tautology. The relativisation of this concept to theories
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Notation Formal semantics

⊥ w(⊥) = 0
> w(>) = 1
¬α w(¬α) = 1− w(α)

α→ β w(α→ β) = min {1, 1− (w(α)− w(β))}
α ∨ β w(α ∨ β) = max {w(α), w(β)}
α ∧ β w(α ∧ β) = min {w(α), w(β)}
α↔ β w(α↔ β) = 1− |w(α)− w(β)|
α⊕ β w(α⊕ β) = min {1, w(α) + w(β)}
α� β w(α� β) = max {0, w(α) + w(β)− 1}
α	 β w(α	 β) = max {0, w(α)− w(β)}

Table 2: Formal semantics of connectives in  Lukasiewicz logic.

leads to the notion of semantic consequence. Let S ⊆ Form be any subset, and
let Θ = S` be its associated theory. Given α ∈ Form, the assertion S � α
states that any evaluation w : Form→ [0, 1] that satisfies w(S) = {1}— mean-
ing that w(β) = 1 for each β ∈ S — must also satisfy w(α) = 1. When this is
the case, we say that α is a semantic consequence of S. We write S� for the set
of semantic consequences of S.

It is an exercise to check that L enjoys the generalised validity theorem: for
any S ⊆ Form and any α ∈ Form, if S ` α then S � α. (For a proof, see [5,
4.5.1].) On the other hand, it is a non-trivial theorem that L is complete7 with
respect to the many-valued semantics above: hence ` α if, and only if, � α, for
any α ∈ Form. The first proof of this appeared in [20]; see also [5, 4.5.1 &
4.5.2].

All of the above can be adapted in the obvious manner to the finite set
Varn = {X1, . . . , Xn}, in which case one speaks of  Lukasiewicz logic over n
(propositional) variables, denoted Ln. The results in the sequel are formulated
for Ln, though they do admit extension to L . Although, strictly speaking, one
should introduce fresh consequence relation symbols `n and �n for Ln, we will
avoid this pedantry and use ` and � instead. We will write Formn for the set
of formulæ whose propositional variables are contained in Varn.

5. From functions to logic: theories induced by fuzzy sets.

The following is a detailed definition of ΘP as in (*).

Definition 5.1. (1) An assignment µ : Formn → [0, 1] is realised by P (at
x ∈ [0, 1]) if µ(Xi) = fi(x) for each i = 1, . . . , n.

7However, L fails strong completeness (i.e. completeness for theories): there is a set
S ⊆ Form and a formula α ∈ Form such that S � α, but S 6` α; see [5, 4.6].
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(2) The theory ΘP ⊆ Formn associated with P is defined as the set of
formulæ ϕ ∈ Formn such that µ(ϕ) = 1 whenever the assignment µ : Formn →
[0, 1] is realised by P .

We record a simple fact for later use.

Lemma 5.1. The set ΘP ⊆ Formn as in Definition 5.1 is indeed a theory, i.e.
a deductively closed set of formulæ.

Proof. For suppose ϕ ∈ Formn is such that ΘP ` ϕ. Since  Lukasiewicz logic is
sound with respect to [0, 1]-valued assignments [5, 4.5.1], it follows that ΘP � ϕ.
If now the assignment µ is realised by P , by definition it evaluates to 1 each
formula in ΘP ; from ΘP � ϕ we have µ(ϕ) = 1, too, and therefore ϕ ∈ ΘP .
Hence ΘP is a theory.

Remark 2. Observe that the theory ΘP in Lemma 5.1 is always consistent: no
assignment at all µ : Formn → [0, 1] satisfies µ(⊥) = 1, hence ⊥ 6∈ ΘP .

Remark 3. Notice that, as stated in the Prologue, Lemma 5.1 would hold (by the
above proof) for any [0, 1]-valued logic that satisfies the minimal requirement of
soundness with respect to [0, 1]-valued assignments. Also note that the finiteness
of P plays no rôle in the proof. In conclusion, any given collection of fuzzy sets
gives rise to specific theory in any given [0, 1]-valued logic.

For an application of Remark 3 in the context of theories of vagueness, the
interested reader may consult [16].

6. How to axiomatise a pseudo-triangular basis of fuzzy sets.

In this section we throughout work with  Lukasiewicz logic over n proposi-
tional variables, Ln. We prepare the following formulæ in Formn.

ρ = X1 ⊕X2 ⊕ · · · ⊕Xn , (15)

αij = ¬(Xi �Xj) , for i, j = 1, . . . , n, and |i− j| = 1, (16)

βij = ¬(Xi ∧Xj) , for i, j = 1, . . . , n, and |i− j| > 1. (17)

We further set

A = {ρ} ∪ {αij | i, j = 1, . . . , n, and |i− j| = 1}∪
∪ {βij | i, j = 1, . . . , n, and |i− j| > 1} .

By the 1-set of a formula ϕ ∈ Formn we mean the following subset of [0, 1]n:

{(x1, . . . , xn) ∈ [0, 1]n | µ~x(ϕ) = 1} ,

where µ~x : Formn → [0, 1] is the unique evaluation extending the assignment
X1 7→ x1, . . . , Xn 7→ xn. The 1-set of a finite set of formulæ {ϕ1, . . . , ϕm},
moreover, is defined to be the 1-set of the formula ϕ1∧· · ·∧ϕm, or equivalently,
the intersection of the 1-sets of ϕi, i = 1, . . . ,m.

To prove our Theorem II, the following lemma is needed.
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Lemma 6.1. The 1-set of the set of formulæ A is precisely the Hamiltonian
path

⋃n−1
i=1 Conv {ei, ei+1}.

Proof. For n = 3 the proof is provided by Figures 4(a), 4(b) and 4(c).

(a) 1-set of (17). (b) 1-set of (16–17). (c) 1-set of (15–17).

Figure 4: The case n = 3 of the proof of Lemma 6.1.

In general, let I1 be the 1-set of (17). Then (x1, . . . , xn) ∈ I1 if, and only if,
for all i, j ∈ {1, . . . , n} such that |i− j| > 1, 1−min{xi, xj} = 1, that is, if, and
only if, one between xi and xj equals 0. Thus, if Fi is the 2-dimensional face of

[0, 1]n containing both ei and ei+1, we have I1 =
⋃i=1
n−1 Fi.

Let now I2 be the 1-set of (16–17). Then, (x1, . . . , xn) ∈ I2 if, and only if,
I2 ⊆ I1, and, for all i ∈ {1, . . . , n − 1}, 1 −max{0, xi + xi+1 − 1} = 1, that is

xi + xi+1 ≤ 1. Thus, I2 =
⋃n−1
i=1 Conv {0, ei, ei+1}.

Finally, let I3 be the 1-set of (15–17), i.e. of A. Then, (x1, . . . , xn) ∈ I3 if, and

only if, I3 ⊆ I2, and min{1, x1 + · · ·+xn} = 1. Thus, I3 =
⋃n−1
i=1 Conv {ei, ei+1}.

Theorem II. The following are equivalent.

i) P is a pseudo-triangular basis of fuzzy sets.
ii) P is separating, and ΘP = A`.

Proof. i)⇒ ii). It is immediate to check that a pseudo-triangular basis of fuzzy
sets is separating.

We next show that A` ⊆ ΘP . To this aim, let µ : Formn → [0, 1] be an
assignment realised by P at x. By Definition 5.1:

µ(ρ) = min{1, µ(X1) + · · ·+ µ(Xn)} = min{1, f1(x) + · · ·+ fn(x)} ;

µ(αij) = 1−max{0, µ(Xi) + µ(Xj)− 1} = 1−max{0, fi(x) + fj(x)− 1} ,
for i, j = 1, . . . , n, and |i− j| = 1;

µ(βij) = 1−min{µ(Xi), µ(Xj)} = 1−min{fi(x), fj(x)} ,
for i, j = 1, . . . , n, and |i− j| > 1.
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By c) in Definition 2.2, µ(ρ) = 1, and µ(αij) = 1 for all i, j = 1, . . . , n such that
|i − j| = 1. By b) in Definition 2.2, for |i − j| > 1, at least one between fi(x)
and fj(x) equals 0. Thus, µ(βij) = 1, for all i, j = 1, . . . , n, and |i − j| > 1.
Hence A ⊆ ΘP , indeed. By Lemma 5.1 we therefore have A` ⊆ ΘP .

It remains to prove that A` ⊇ ΘP . Let IA be the 1-set of A. By Lemma 6.1
we have

IA =

n−1⋃
i=1

Conv {ei, ei+1} . (18)

On the other hand, by Theorem 3 we have

ranTP =

n−1⋃
i=1

Conv {ei, ei+1} . (19)

Hence IA = ranTP by (18–19). If now ϕ ∈ ΘP , and Iϕ is its 1-set, then each
assignment realised by P at some point of [0, 1] satisfies ϕ by the definition of
ΘP , and therefore we have Iϕ ⊇ IA. By the definition of semantic consequence
we may rewrite the latter inclusion as ϕ ∈ A�. Since A is a finite set, by the
Hay-Wójcicki’s Theorem [5, 4.6.7] we conclude A� = A`, as was to be shown.

ii)⇒ i) That P is separating is evidently equivalent to the fact that the map
TP : [0, 1] → [0, 1]n is injective, so let us assume the latter for the rest of this
proof. Writing again IA for the 1-set of A, by Lemma 6.1 we have (18). Hence
it suffices to show

ranTP = IA , (20)

for then Theorem I implies that P is a pseudo-triangular basis of fuzzy sets.
To prove the inclusion ranTP ⊆ IA, let x = (x1, . . . , xn) ∈ ranTP . Then

the assignment µ(Xi) = xi is realised by P at x, and thus µ � ΘP by the
definition of ΘP . Since ΘP = A` by assumption, and since A is finite, by the
Hay-Wójcicki’s Theorem [5, 4.6.7] we have ΘP = A�, and therefore in particular
µ � A.

To prove the converse, let us set R = ranTP ⊆ IA. Assume by way of
contradiction that R ⊂ IA, i.e. there is x ∈ IA such that x 6∈ R. Therefore, if
we set D = IA \ {x}, we have R ⊆ D. But since R is the continuous image
of a connected set, namely [0, 1], it is itself connected, whereas by (18) we
see that D has two connected components D1 and Dn containing e1 and en,
respectively. Hence either R ⊆ D1, or R ⊆ Dn. Say the former holds, without
loss of generality, so that en 6∈ R. Next observe that R must be a closed set in
the metric space IA, the latter endowed with the metric d(·, ·) induced by the
Euclidean distance of [0, 1]n: indeed, this is a special case of the well-known
closed map lemma, stating that a continuous map from a compact space to a
Hausdorff (in particular, metric) space must be closed (=must send closed sets
to closed sets). Hence en is an interior point of IA \R, and thus there is an open
set U ≡ U(en, ε) = {x ∈ IA | d(en, x) < ε}, for some real number ε > 0, such
that U ∩R = ∅. For an integer k ≥ 1, let us consider the formula in Formn

ϕk = ¬Xn ⊕ · · · ⊕ ¬Xn︸ ︷︷ ︸
k times

.
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Further, let Iϕk
be the 1-set of ϕk. Direct inspection shows that Iϕk

= {(x1, . . . , xn) ∈
[0, 1]n | xn ≤ k−1

k }. Let k0 ≥ 1 be the least integer that satisfies

k0 ≥
√

2

ε
.

Then a simple computation shows

R ⊆ Iϕk0
. (21)

By (21) we infer at once
ϕk0 ∈ ΘP . (22)

On the other hand, the assignment µ : Formn → [0, 1] such that µ(Xn) = 1 and
µ(Xi) = 0, for i = 1, . . . , n− 1, satisfies µ(ϕk0) = 0 and evaluates each formula
in A to 1, because {en} ∈ IA. Hence ϕk0 6∈ A�, and therefore

ϕk0 6∈ A` (23)

by soundness [5, 4.5.1]. Now (22–23) yield the desired contradiction ΘP 6=
A`.

7. Epilogue.

How can we generalise the results above to situations in which we are con-
cerned with several physical observables? Here, we are to deal with fuzzy sets
fi : [0, 1]m → [0, 1], i = 1, . . . , n, the integer m ≥ 1 being the number of obser-
vables. The generalisation of triangular bases to this setting requires elements of
piecewise linear topology [21], which we assume in the following discussion. Con-
sider a triangulation Σ of [0, 1]m, and let v1, . . . , vl be the (finite) list of vertices
of Σ. For each vi, let hi : [0, 1]m → [0, 1] be the function such that hi(vi) = 1,
hi(vj) = 0 if j 6= i, and hi agrees with an affine linear map Rm → R on each
simplex of Σ. Then hi is automatically continuous and piecewise-linear, and is
called the Schauder hat of Σ at vi. The collection HΣ = {hi | i = 1, . . . , n} is the
Schauder basis of Σ. We then define the family P of fuzzy sets to be a triangular
basis if is satisfies P = HΣ for some triangulation Σ of [0, 1]n. It is an exercise
to check that this definition agrees with Definition 2.2 in case n = 1. It is also
easy to see that Schauder bases are Ruspini partitions. Unfortunately, however,
no elementary characterisation of Schauder bases analogous to our Theorem I
is known. Nonetheless, abstract characterisations of Schauder bases have been
obtained using homology and other mathematical tools [15]. This leads to the
notion of abstract Schauder bases, the higher-dimensional analogue of pseudo-
triangular bases of fuzzy sets, originally introduced in the last-named author’s
Ph.D. thesis. Remarkably,  Lukasiewicz logic does express the notion of abstract
Schauder basis, so that it is possible to formulate a higher-dimensional ana-
logue of our Theorem II. For the algebraic treatment of abstract Schauder bases
in the language of lattice-groups—structures closely related to MV-algebras,
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the algebraic semantics of  Lukasiewicz logic—the interested reader is referred
to [15, 18, 17], and to the references therein. For an account of bases in the
context of MV-algebras and  Lukasiewicz logic themselves, see [19].

 Lukasiewicz and Gödel-Dummett logics are part of a hierarchy of systems
based on triangular norms; see [13]. It has been argued that the hierarchy,
together with its generalisations, provides a framework that makes precise the
notion of mathematical fuzzy logic [6, 7]. The proof of Lemma 5.1 above, though
easy, does say that the programme of axiomatising properties of fuzzy sets by
means of a [0, 1]-valued logic makes sense at a very general level. It is important
to stress that, to carry this programme out, one needs a reasonably complete
set of analogues of standard notions in mathematical logic8—e.g. deductively
closed theories and axiomatisations. Mathematical fuzzy logic, in the sense
above, does provide such analogues. It is therefore possible, at least in princi-
ple, to develop this line of research extensively.9 The benefits would surely be
equally distributed between the theoretical and the application-oriented parties.
One knows more about, say, Gödel-Dummett logic as a theoretical many-valued
system, if one knows exactly to what extent the logic is capable of expressing
the semantical notion of Ruspini partition. And one can make more conscious
design choices in facing, say, the problem of developing a specific fuzzy-based
control system, if one has that very same information about Gödel-Dummett
logic available.

Acknowledgements. The present paper is a much-expanded follow up to the
conference paper [10].
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