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Abstract. A Ruspini partition is a finite family of fuzzy sets {f1, . . . , fn},
fi : [0, 1] → [0, 1], such that

∑
n

i=1
fi(x) = 1 for all x ∈ [0, 1]. We analyze

such partitions in the language of Gödel logic. Our main result identifies
the precise degree to which the Ruspini condition is expressible in this
language, and yields inter alia a constructive procedure to axiomatize a
given Ruspini partition by a theory in Gödel logic.

1 Introduction

Let [0, 1] be the real unit interval. By a fuzzy set we shall mean a function
f : [0, 1] → [0, 1]. Throughout the paper, we fix a finite nonempty family

P = {f1, . . . , fn}

of fuzzy sets, for n ≥ 1 an integer. Moreover, we write n for the set {1, . . . , n}.

In several soft computing applications, the following notion of fuzzy partition
plays an important role. It is often traced back to [9, p. 28].

Definition 1. We say P is a Ruspini partition if for all x ∈ [0, 1]

n∑

i=1

fi(x) = 1 . (1)

By way of informal motivation for what follows, think of the real unit interval
[0, 1] as the normalized range of values of a physical observable, say “Temper-
ature”. Then each fi ∈ P can be viewed as a means of assigning a truth-value
to a proposition about temperature in some many-valued logic L . Had one no
information at all about such propositions, one would be led to identify them
with propositional variables Xi, subject only to the axioms of L . However,
the set P does encode information about X1, . . . ,Xn. For example, consider
P = {f1, f2, f3} as in Fig. 1, and say f1, f2, and f3 provide truth-values for
the propositions X1 = “The temperature is low”, X2 = “The temperature is



Fig. 1. A Ruspini partition {f1, f2, f3}.

medium”, and X3 = “The temperature is high”, respectively. If L has a con-
junction ∧ interpreted by minimum, the proposition X1 ∧X3 has 0 as its only
possible truth-value, i.e., it is a contradiction. The set P then leads one to add
extra-logical axioms to L , e.g. ¬(X1 ∧ X3), in an attempt to express the fact
that one cannot observe both a high and a low temperature at the same time.
More generally, P implicitly encodes a theory over the pure logic L .

Throughout the paper, we shall take L to be Gödel logic. Recall that Gödel

(propositional) logic can be defined as the schematic extension of the intuition-
istic propositional calculus by the prelinearity axiom (α→ β) ∨ (β → α). It can
also be semantically defined as a many-valued logic, as follows. Let us consider
well-formed formulas over propositional variables X1,X2, . . . in the language
∧,∨,→,¬,⊥,⊤. (We use ⊥ and ⊤ as the logical constants falsum and verum,
respectively). By an assignment we shall mean a function µ from (well-formed)
formulas to [0, 1] ⊆ R such that, for any two such formulas α, β,

µ(α ∧ β) = min{µ(α), µ(β)}
µ(α ∨ β) = max{µ(α), µ(β)}

µ(α→ β) =

{
1 if µ(α) ≤ µ(β)
µ(β) otherwise

and µ(¬α) = µ(α → ⊥), µ(⊥) = 0, µ(⊤) = 1. A tautology is a formula α such
that µ(α) = 1 for every assignment µ. As is well-known, Gödel logic is complete
with respect to this many-valued semantics. We refer to e.g. [6] [7] for detailed
treatments.

This paper provides a thorough analysis of how the Ruspini condition on P is
reflected by the resulting theory over Gödel logic. In our main Theorem, we shall
eventually obtain a constructive procedure to axiomatize the theory implicitly
encoded by P . While it is to be expected that Gödel logic cannot precisely
capture addition of real numbers in the Ruspini condition (1), our main result
proves that, up to logical equivalence, (1) reduces to the notion of weak Ruspini

partition in Definition 7. In Section 2 we collect the necessary algebraic and
combinatorial background, and prove some preliminary results. In Section 3 we
establish our main result. The final Section 4 summarizes our findings.



2 Preliminary Results

We make use of the algebraic counterpart of Gödel logic, namely, the variety
of Gödel algebras. These are Heyting algebras 〈G,∧,∨,¬,⊤,⊥〉 satisfying the
prelinearity condition (x→ y) ∨ (y → x) = ⊤.

The collection of all functions from [0, 1] to [0, 1] has the structure of a Gödel
algebra under the following operations, for f, g : [0, 1] → [0, 1].

(f ∧ g)(x) = min {f(x), g(x)}
(f ∨ g)(x) = max {f(x), g(x)}

(f → g)(x) =

{
1 if f(x) ≤ g(x)
g(x) otherwise

(¬f)(x) =

{
1 if f(x) = 0
0 otherwise.

The top and bottom elements of the algebra are the constant functions 1 and 0,
respectively.

We shall denote by G (P ) the Gödel subalgebra of the algebra of all functions
from [0, 1] to itself generated by P . For each integer k ≥ 0, we write Gk for the
free Gödel algebra on k free generators X1, . . . ,Xk. Note that, since the variety
of Gödel algebras is locally finite, Gk is finite. Since G (P ) is generated by n
elements, there is a congruence Θ on Gn such that

Gn/Θ ∼= G (P ) , (2)

where ∼= denotes isomorphism of Gödel algebras. Congruences of finite Gödel al-
gebras are principal, so that Θ is generated by a single equation α(X1, . . . ,Xn) =
⊤ in the language of Gödel algebras. In logical terms, there is a single formula

αP ≡ αP (X1, . . . ,Xn) (3)

over the n variables X1, . . . ,Xn, such that the Lindenbaum algebra of the theory
axiomatized by the single axiom αP is isomorphic to G (P ). Note that αP is
uniquely determined by P up to logical equivalence. Intuitively, αP encodes all
relations between the fuzzy sets f1, . . . , fn that Gödel logic is capable to express.

In this section, we shall show how to obtain an explicit combinatorial repre-
sentation of the algebra G (P ) in terms of certain partially ordered sets (posets,
for short). Recall that, given a poset (F,≤) and a set Q ⊆ F , the downset of Q
is

↓ Q = {x ∈ F | x ≤ q, for some q ∈ Q}.

We write ↓ q for ↓ {q}. A poset F is a forest if for all q ∈ F the downset ↓ q
is a chain (i.e., a totally ordered set). A leaf is a maximal element of F . A tree

is a forest with a bottom element, called the root of the tree. A subforest of a
forest F is the downset of some Q ⊆ F . The height of a chain is the number of
its elements. The height of a forest is the height of an inclusion-maximal chain
of the forest.



Let Sub(F ) denote the family of all subforests of a forest F . Notice that
Sub(F ) has a natural structure of Gödel algebra, where ∧ and ∨ are given by
union and intersection of subforests, and implication is defined, for F1, F2 ∈
Sub(F ), as

F1 → F2 = {q ∈ F | ↓ q ∩ F1 ⊆ ↓ q ∩ F2}.

The constants ⊥,⊤ are the empty forest and F itself, respectively. Finally, nega-
tion is defined by ¬F1 = F1 → ⊥.

We introduce a specific forest built from assignments that plays a key role in
the following.

Definition 2. We say that two assignments µ and ν are equivalent over the
first n variables, or n-equivalent, written µ ≡n ν, if and only if there exists a

permutation σ : n→ n such that :

0 �0 µ(Xσ(1)) �1 · · · �n−1 µ(Xσ(n)) �n 1 , (4)

0 �0 ν(Xσ(1)) �1 · · · �n−1 ν(Xσ(n)) �n 1 ,

where �i ∈ {<,=}, for i = 0, . . . , n.

Clearly, ≡n is an equivalence relation. Throughout, we write Fn for the (finite)
set of equivalence classes of ≡n.

It is not difficult to show that if α(X1, . . . ,Xn) is a well-formed formula in
Gödel logic, and µ, ν are two n-equivalent assignments, then

µ(α(X1, . . . ,Xn)) = 1 if and only if ν(α(X1, . . . ,Xn)) = 1. (5)

We can further endow Fn with a partial order.

Definition 3. Let [µ]≡n
, [ν]≡n

∈ Fn, and let σ : n → n be a permutation such

that

0 �0 ν(Xσ(1)) �1 · · · �n−1 ν(Xσ(n)) �n 1 ,

0 �̃0 µ(Xσ(1)) �̃1 · · · �̃n−1 µ(Xσ(n)) �̃n 1 ,

where �i, �̃i ∈ {<,=}, for i = 0, . . . , n. We define [µ]≡n
≤ [ν]≡n

if and only if

there exists an index k ∈ {0, . . . , n} such that

i) �̃i coincides with �i if 0 ≤ i ≤ k,

ii) �̃i coincides with = if k + 1 ≤ i ≤ n.

Example 1. Let µ, ν, ξ be assignments such that

– µ(X1) = 1, µ(X2) = 1/3, µ(X3) = 0, µ(X4) = 1,
– ν(X1) = 1, ν(X2) = 1/4, ν(X3) = 0, ν(X4) = 1/2,
– ξ(X1) = 1, ξ(X2) = 1/2, ξ(X3) = 0, ξ(X4) = 1/2.

For σ(1) = 3, σ(2) = 2, σ(3) = 4, σ(4) = 1, one has



– 0 = µ(X3) < µ(X2) < µ(X4) = µ(X1) = 1 ,
– 0 = ν(X3) < ν(X2) < ν(X4) < ν(X1) = 1 ,
– 0 = ξ(X3) < ξ(X2) = ξ(X4) < ξ(X1) = 1 .

Thus, according to Definition 3, [µ]≡n
≤ [ν]≡n

, and [ξ]≡n
is uncomparable to

both [µ]≡n
and [ν]≡n

.

One checks that ≤ in Definition 3 indeed is a partial order on Fn, and
(Fn,≤) is in fact a forest [4, Lemma 3.3]. We immediately notice that

a) the roots of the trees are the classes of Boolean assignments,
b) the class [µ]≡n

such that µ(X1) = · · · = µ(Xn) = 0 is the only tree having
height 1, and

c) the leaves are those classes of assignments in which no variable is set to 1.

For each i = 1, . . . , n, let χi = {[µ]≡n
| µ(Xi) = 1} be the ith generating

subforest of Fn.

Proposition 1. Fix an integer k ≥ 0. (i) Sub(Fk) is (isomorphic to) the free

Gödel algebra on k free generators. A free generating set is given by the collection

of generating subforests. (ii) Up to isomorphism, the quotients of Sub(Fk) are

precisely the algebras of the form Sub(F ), for F ∈ Sub(Fk). (iii) The set of

prime filters ordered by reverse inclusion of Sub(F ) is order-isomorphic to F for

every F ∈ Sub(Fk).

Proof. The proof is a straightforward translation of [5, Remark 2 and Proposition
2.4] in the language of assignments. ⊓⊔

Figure 2 shows the forest F2, whose nodes are labelled by the ordering of vari-
ables under a given assignment as in (4). However, for the sake of readability,
here and in the following figure we write Xi instead of µ(Xi).

Fig. 2. The forest F2.

As an immediate consequence of Proposition 1, we can reformulate (2) as
follows: P uniquely determines a congruence Θ′ on Sub(Fn), and a subforest
F (P ) of Fn such that

Sub(Fn)/Θ
′ ∼= Sub(F (P )) ∼= G (P )

To relate Θ′ with the formula αP in (3) or, equivalently, with F (P ), we shall
give an explicit description of F (P ). To this end, it is convenient to introduce
the following notion.



Definition 4. Let [µ]≡n
∈ Fn and x ∈ [0, 1]. We say [µ]≡n

is realized by P at
x if there exists a permutation σ : n→ n such that

0 �0 fσ(1)(x) �1 · · · �n−1 fσ(n)(x) �n 1 ,

0 �0 µ(Xσ(1)) �1 · · · �n−1 µ(Xσ(n)) �n 1 ,

where �i ∈ {<,=}, i ∈ {0, . . . , n}.

Proposition 2.

F (P ) = ↓ {[µ]≡n
∈ Fn | [µ]≡n

is realized by P at somex ∈ [0, 1]}

Proof. We construct a subdirect representation of G (P ) as follows. There exists
a finite set {x1, . . . , xm} ⊆ [0, 1] such that for each y ∈ [0, 1], if [µ]≡n

∈ F (P ) is
realized by P at y, then it is also realized by P at xi, for some i ∈ m. Moreover,
one checks that evaluating the elements of G (P ) at xi yields a totally ordered
Gödel algebra Cxi

that is a homomorphic image of G (P ) via the quotient map
qi given by restriction to xi. The homomorphism

s : G (P ) →֒
m∏

i=1

Cxi

given by
g ∈ G (P ) 7−→ (q1(g), . . . , qm(g))

is injective. Indeed, let g 6= h ∈ G (P ), say g(y) > h(y) for y ∈ [0, 1]. For the
sake of brevity, we shall only deal with the case 1 > g(y) > h(y) > 0. Then
g(y) = fi(y) and h(y) = fj(y) for i 6= j. Let [µ]≡n

be the assignment realized by
P at y. There exists u ∈ m such that [µ]≡n

is realized by P at xu, and therefore
fi(xu) > fj(xu), which proves s(g) 6= s(h).

It now follows that s is a subdirect representation of G (P ). By Proposi-
tion 1(iii) we identify prime filters of G (P ) with elements of F (P ) ⊆ Fn. The
primes that are kernels of q1, . . . , qm must comprise all inclusion-minimal primes
of G (P ), i.e., all leaves of F (P ), for otherwise s could not be a subdirect repre-
sentation. Therefore, the classes [µ]≡n

realized by P at some x ∈ [0, 1] comprise
all leaves of F (P ) (and possibly other elements). Since any forest is the downset
of its leaves the proposition is proved. ⊓⊔

Moreover, we associate with a formula α(X1, . . . ,Xn) the uniquely determined
subforest of Fn, denoted Fα, as follows:

Fα = {[µ]≡n
∈ Fn | µ(α) = 1} .

By (5), Fα does not depend on the choice of µ. Clearly, Fα corresponds to
the quotient algebra Sub(Fn)/Θ

′, where Θ′ is the congruence generated by
α(X1, . . . ,Xn) = ⊤. Finally, by the foregoing we have

FαP
= F (P ) . (6)



3 Gödel Approximation of Ruspini Partitions

Definition 5. We denote by Rn the subforest of Fn obtained by removing from

Fn the single tree having height 1, and the leaves of all the trees having height

2. We call Rn the Ruspini forest.

Fig. 3. The Ruspini forest R2.

We now show how to explicitly axiomatize Rn.

Definition 6. We define the Ruspini axiom ρn = α ∨ β, where

α =
∨

1≤i<j≤n

(¬¬Xi ∧ ¬¬Xj) , and β =
∨

1≤i≤n

(Xi ∧
∧

1≤j 6=i≤n

¬Xj) .

Lemma 1. Fρn
= Rn .

Proof. Fix an assignment µ. Since

µ(¬¬X) =

{
0 if µ(X) = 0
1 otherwise,

µ(α) 6= 1 if and only if at most one variable Xi0 satisfies µ(Xi0) 6= 0.
Observe now that µ(β) = 1 if and only if there exists i ∈ n such that, for

j 6= i, µ(Xi) = 1 and µ(Xj) = 0.
Therefore, µ(ρn) = µ(α ∨ β) 6= 1 if and only if there exists i0 ∈ n such that,

for j 6= i0, µ(Xi0) < 1 and µ(Xj) = 0. It is now straightforward to verify that
the latter condition holds if and only if [µ]≡n

/∈ Rn. ⊓⊔

Let us introduce a property of P that we shall use in our main result. Let
λ : [0, 1] → [0, 1] be an order preserving map such that λ(0) = 0 and λ(1) = 1,
and let t = inf λ−1(1). If the restriction of λ to [0, t] is an order isomorphism
between [0, t] and [0, 1], we say λ is a comparison map.

Definition 7. We say P is a weak Ruspini partition if for all x ∈ [0, 1], there

exist y ∈ [0, 1], a comparison map λ, and an order isomorphism γ : [0, 1] → [0, 1]
such that

(i) λ(fi(y)) = fi(x), for all i ∈ n.



(ii)
∑n

i=1 γ(fi(y)) = 1.

Lemma 2. Let [µ]≡n
, [ν]≡n

∈ Fn and x, y ∈ [0, 1] such that [µ]≡n
and [ν]≡n

are realized by P at x and y, respectively. Then the following are equivalent.

(i) [µ]≡n
≤ [ν]≡n

.

(ii) There exists a comparison map λ : [0, 1] → [0, 1] with λ(fi(y)) = fi(x), for

all i ∈ n.

Moreover, the following are equivalent.

(iii) [µ]≡n
is a leaf of Rn.

(iv) There exists an order isomorphism γ : [0, 1] → [0, 1] with
∑n

i=1 γ(fi(x)) = 1.

Proof. (i)⇒(ii). By Definitions 3 and 4, there exists a permutation σ : n → n
such that

0 �0 fσ(1)(y) �1 · · · �n−1 fσ(n)(y) �n 1 ,

0 �̃0 fσ(1)(x) �̃1 · · · �̃n−1 fσ(n)(x) �̃n 1 ,

where �i, �̃i ∈ {<,=}, and there is k ∈ {0, . . . , n} satisfying i) and ii) in
Definition 3. We deal with the case k < n only; the case k = n is a trivial variation
thereof. We define Λ by Λ(fσ(i)(y)) = fσ(i)(x), for 1 ≤ i ≤ k, and Λ(fσ(i)(y)) = 1
if k + 1 ≤ i ≤ n. We extend Λ to a comparison map as follows. Consider the
closed intervals I0 = [0, fσ(1)(y)], J0 = [0, fσ(1)(x)], Ii = [fσ(i)(y), fσ(i+1)(y)] and
Ji = [fσ(i)(x), fσ(i+1)(x)], for 1 ≤ i ≤ k. Now let us fix 0 ≤ h ≤ k. Note that if Ih
collapses to a point, then Jh also collapses to a point. Therefore in all cases we
can choose order isomorphisms λh : Ih → Jh. Moreover, set Ik+1 = [fσ(k+1)(y), 1]
and λk+1 : Ik+1 → {1}. Since λh and λh+1 agree at Ih ∩ Ih+1 by construction,
the function λ : [0, 1] → [0, 1] defined by λ(r) = λj(r) if r ∈ Ij , for 0 ≤ j ≤ k+1,
is a comparison map satisfying (ii).

(ii)⇒(i). Immediate from Definitions 3 and 4.

(iii)⇒(iv). It is an exercise to check that [µ]≡n
is a leaf of Rn if and only if

exactly one of the following two cases hold.

Case 1. There exists i0 such that µ(Xi0) = 1 and µ(Xi) = 0 for i 6= i0.
Let γ be the identity map. By Definition 4, we have

∑n

i=1 γ(fi(x)) = 1.

Case 2. For all i, µ(Xi) < 1, and there exist i0, i1 such that 0 < µ(Xi0) ≤ µ(Xi1).
Let us write

0 �0 fσ(1)(x) �1 · · · �n−1 fσ(n)(x) �n 1 ,

for some permutation σ and �i∈ {<,=}. We shall assume �0 is <. The case
where some fi takes value zero at x is entirely similar.

Now consider the (n− 1)-dimensional simplex3 Sn, given by the convex hull

of the standard basis of Rn. Let S
(1)
n be the simplicial complex given by the first

barycentric subdivision of Sn. The (n − 1)-dimensional simplices of S
(1)
n are in

bijection with permutations of n, and the solution set of the inequalities

0 ≤ r1 ≤ · · · ≤ rn ≤ 1 (7)

3 For all unexplained notions in combinatorial topology, please see [8].



in Sn is an (n− 1)-dimensional simplex S ∈ S
(1)
n . Consider the equalities

ri = ri+1 (8)

for each i = 1, . . . , n− 1 such that �i is =. Then the solution set of (7) and (8)
is a nonempty face T of S. Consider next the strict inequalities





ri < ri+1

0 < r1
rn < 1

(9)

for all i = 1, . . . , n − 1 such that �i is <. Then the solution set of (7), (8),
and (9) is the relative interior T ◦ of T . Since T is nonempty, T ◦ is nonempty.
The barycenter b = (b1, . . . , bn) of T lies in T ◦. Since b ∈ Sn, we have

∑n

k=1 bk.
Moreover, by construction,

0 �0 b1 �1 · · · �n−1 bn �n 1 .

We define Γ by Γ (fσ(i)) = bi. Arguing as in the proof of (i)⇒(ii), we conclude
that there is an extension of Γ to an order isomorphism γ : [0, 1] → [0, 1]
satisfying (iv).

(iv)⇒(iii). Suppose [µ]≡n
is not a leaf of Rn. Thus, exactly one of the fol-

lowing two cases holds.

Case 1. [µ]≡n
∈ Fn \ Rn.

In this case there exists i0 such that µ(Xi0) < 1 and µ(Xi) = 0 for i 6= i0.
Using Definition 4, we have

∑n

i=1 γ(fi(x)) < 1, for each order isomorphism γ.

Case 2. [µ]≡n
∈ Rn, but [µ]≡n

∈ Rn is not a leaf of Rn.
It is easy to check that there exist i0, i1 such that 0 < µ(Xi0) ≤ µ(Xi1) = 1.

Using Definition 4, we have fi1(x) = 1 and fi0(x) > 0, and thus
∑n

i=1 γ(fi(x)) >
1, for each order isomorphism γ. ⊓⊔

To state our main result we still need to show how to obtain a formula
ψ[µ]≡n

associated with a given element [µ]≡n
∈ Fn such that ψ[µ]≡n

evaluates
to 1 exactly on ↓ [µ]≡n

. For this, we define the derived connective α⊳β = ((β →
α) → β). Given an assignement µ we have that

µ(α ⊳ β) =

{
1 if µ(α) < µ(β) or µ(α) = µ(β) = 1
µ(β) otherwise.

Suppose now that, for a given permutation σ : n→ n,

0 �0 µ(Xσ(1)) �1 · · · �n−1 µ(Xσ(n)) �n 1 ,

where �i ∈ {<,=}, i = 0, . . . , n. We associate to [µ]≡n
the formula

ψ[µ]≡n
= (⊥ ⊲⊳0 Xσ(1)) ∧ (Xσ(1) ⊲⊳1 Xσ(2)) ∧ · · · ∧ (Xσ(n) ⊲⊳n ⊤) ,

where ⊲⊳i= ⊳ if �i is <, and ⊲⊳i=↔ otherwise.



Lemma 3. Fψ[µ]≡n
= ↓ [µ]≡n

Proof. We omit the straightforward verification. Compare [3, 1] where a full-
fledged theory of normal forms is developed. ⊓⊔

Given a forest F ⊆ Fn let us indicate with Root(F ) the set of roots of F (i.e.
the classes of Boolean assignments over the first n variables). If r ∈ Root(F ),
we write Leaf(r, F ) for the set of leaves of F above the root r.

Definition 8. We say that a forest F is a Ruspini subforest if F ⊆ Rn and

each leaf of F is a leaf of Rn.

We write ⊢ α if Gödel logic proves the formula α; equivalently, by completeness,
if µ(α) = 1 for all assignments µ. We can finally prove our main result.

Theorem. The following are equivalent.

(i) P is a weak Ruspini partition.

(ii) F (P ) is a Ruspini subforest.

(iii) ⊢ α ∧ β ∧ γ, where

α = (αP → ρn),
β =

∧
r∈Root(Rn)

∧
l∈Leaf(r,Rn)

(
(ψl → αP ) ∨ ((ψl ∧ αP ) → ψr)

)
,

γ =
∧
r∈Root(Rn)

(
(ψr → αP ) → (

∨
l∈Leaf(r,Rn)(ψl → αP ))

)
.

Moreover, for any Ruspini subforest F there exists a Ruspini partition P ′ =
{f ′1, . . . , f

′
n}, with f ′i : [0, 1] → [0, 1], such that F (P ′) = F .

Proof. (i) ⇒ (ii). By Lemma 2, we can reformulate Definition 7 in terms of
assignments as follows. For all [µ]≡n

∈ Fn realized by P at some x ∈ [0, 1], there
exists [ν]≡n

≥ [µ]≡n
realized by P at some y ∈ [0, 1] such that [ν]≡n

is a leaf of
Rn. Thus, by Proposition 2, F (P ) is exactly the downset of those leaves of Rn

realized by P at some x ∈ [0, 1].

(ii) ⇒ (iii). Let r ∈ Root(Rn). If r /∈ F (P ) then the set Leaf(r,F (P ))
is empty, and by (6) the formula αP evaluates to zero under all assignments µ
such that [µ]≡n

≥ r. Thus, for all l ∈ Leaf(r,Rn), (ψl ∧ αP ) is a contradiction
and (ψl ∧ αP ) → ψr is a tautology. Therefore, the conjucts of β indexed by
r /∈ F (P ) are tautologies. Moreover, since ψr and ψl evaluate to zero under all
assignments µ such that [µ]≡n

� r, and to a value different from zero otherwise,
(ψr → αP ) ↔ (ψl → αP ) is a tautology for all l ∈ Leaf(r,Rn), and then
the conjucts of γ indexed by r /∈ F (P ) are tautologies. Let now r ∈ F (P ),
and let l ∈ Leaf(r,Rn). If l ∈ F (P ) then ψl → αP is a tautology, otherwise
(ψl ∧αP ) → ψr is a tautology. Thus, every formula in β indexed by r ∈ F (P ) is
a tautology. Moreover, Leaf(r,F (P )) 6= ∅, and for l0 ∈ Leaf(r,F (P )), ψl0 → αP
is a tautology. Therefore, every formula in γ indexed by r ∈ F (P ) is a tautology.
We thus obtain that β and γ are tautologies. Since α also is a tautology by the
hypothesis F (P ) ⊆ Rn, we obtain that whenever (ii) holds, α ∧ β ∧ γ is a
tautology.



(iii) ⇒ (i). Suppose P is not a weak Ruspini partition. By Definition 7,
using Lemma 2 and (6), there exists [µ]≡n

∈ FαP
such that exactly one of the

following two condition hold.
(a) [µ]≡n

∈ Fn \ Rn.
(b) [µ]≡n

∈ Rn is a maximal element of FαP
, but it is not a leaf of Rn.

If (a) holds then, clearly, µ(α) 6= 1. As to (b), let r ≤ [µ]≡n
be a root of Fn. If

r = [µ]≡n
, then the formula ψr → αP is a tautology, while ψl → αP does not

evaluate to 1 at l, for all l ∈ Leaf(r,Rn). Thus, γ is not a tautology. If r 6= [µ]≡n

then for all l ∈ Leaf(r,Rn), l ≥ [µ]≡n
, ψl → αP and (ψl ∧αP ) → ψr evaluate to

zero at l. Therefore β is not a tautology. In any case, α∧β∧γ is not a tautology.

Finally, we prove the last statement of the theorem. Let [µ1]≡n
, . . . , [µm]≡n

be the leaves of F . Partition the interval [0, 1] into m intervals I1 = [0, x1],
I2 = (x1, x2],. . ., Im = (xm−1, 1 = xm]. We construct the functions f ′i as follows.
For i ∈ n, j ∈ m, we set f ′i(x) = Cij ∈ R if x ∈ Ij . The constants Cij are chosen
so that

(a) [µj ]≡n
is realized by P ′ at xj ,

(b)
∑n

i=1 Cij = 1.
Obviously, it is always possible to choose Cij so that (a) holds. The proof of
(iii) ⇒ (iv) in Lemma 2 shows that, in fact, it is always possible to choose Cij
so that both (a) and (b) hold. ⊓⊔

In [2, Theorem 3] it is shown that the number of leaves of Fn is

Ln = 2

n∑

k=1

k!

{
n
k

}
, (10)

where

{
n
k

}
is the number of partitions of an n-element set into k classes, i.e.

the Stirling number of the second kind. The number
∑n

k=1 k!

{
n
k

}
is the nth

ordered Bell number, i.e. the number of all ordered partitions of n. Compare
sequence A000670 in [10].

Consider P ′ = {f ′1, . . . , f
′
n}, where f ′i : [0, 1] → [0, 1]. In the light of Section

2, let us say that P ′ is Gödel-equivalent to P if F (P ) = F (P ′), or, equivalently,
⊢ αP ↔ αP ′ . Then:

Corollary 1. The number of classes of Gödel-equivalent weak Ruspini partitions

of n elements is 2Ln−1 − 1, where Ln is given by (10).

Proof. A weak Ruspini partition P is characterized, up to Gödel-equivalence,
by the forest F (P ), and therefore by a subset of leaves of Rn. Noting that the
number of leaves of Rn is Ln − 1, and that for every weak Ruspini partition P ,
F (P ) 6= ∅, the corollary follows. ⊓⊔

Corollary 2. (i) There is a Ruspini subforest F such that whenever F (P ) = F
then each fi ∈ P has a point of discontinuity. (ii) For all Ruspini subforests F



with L leaves there is a choice of a Ruspini partition P ′ = {f ′1, . . . , f
′
n}, with

F (P ′) = F such that each f ′i : [0, 1] → [0, 1] has at most L − 1 points of

discontinuity.

Proof. (i) It suffices to choose F ⊆ Rn as the forest of all Boolean assignments
which are leaves of Rn. (ii) The construction used in the proof of the last state-
ment of Theorem 3 yields the desired P ′. ⊓⊔

4 Conclusions

Our analysis shows that Gödel logic does not have sufficient expressive power
to capture the Ruspini condition (1). However, we have proved that Gödel logic
does capture the notion of weak Ruspini partition in Definition 7. Moreover,
our Theorem 3 shows that weak Ruspini partitions indeed are the best available
approximation of Ruspini partitions in Gödel logic: for each weak Ruspini parti-
tion P , there exists a Ruspini partition P ′ that is Gödel-equivalent to P . Thus,
there is no formula in Gödel logic telling P and P ′ apart. Moreover, Corollary
2 shows that one can always choose a Ruspini partition P ′ whose elements have
a bounded number of points of discontinuity. Finally, up to Gödel equivalence,
there is a finite number of weak Ruspini partitions of n elements, and Corollary
1 gives an exact formula to compute this number.
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