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Abstract. The main goal of this work is to establish a bijection between Dyck

words and a family of Eulerian digraphs. We do so by providing two algorithms

implementing such bijection in both directions. The connection between Dyck
words and Eulerian digraphs exploits a novel combinatorial structure: a binary

matrix, we call Dyck matrix, representing the cycles of an Eulerian digraph.

1. Background, and motivation

A digraph G is Eulerian if at every vertex the in-degree equals the out-degree.
(Note that we do not require G to be connected.) The edge set of an Eulerian
digraph G can be partitioned into directed cycles. For a non-empty multiset s =
{s1, s2, . . . , sn}, of n positive integers, we call an Eulerian digraph s-labelled if its
edge set is partitioned into n directed cycles of length s1, s2, . . . , sn, each with a
distinguished first edge (and hence a unique second, third, etc., m-th edge). Figure
1 shows a {3, 2, 1}-labelled Eulerian digraph, with its 3 directed cycles of size 1, 2
and 3; the jth edge of the ith cycle is labelled ei,j . (Notice that in next Sections we
endow these digraphs with a linear order on their cycles.)
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Figure 1. A {3, 2, 1}-Eulerian digraph.

A Dyck word on the alphabet1 {x,D} is a string with the same number of x’s and
D’s, and such that the number of x’s in any initial segment is greater or equal to
the number of D’s. A Dyck path is a lattice path in Z2 starting at (0, 0), ending on
the diagonal y = x, with unit steps in the North and East directions, and such that
it does not pass below the y = x diagonal. One can easily build a correspondence
between Dyck paths and Dyck words, by mapping a North step to the character
x and an East step to the character D. Figure 2 shows the Dyck path associated
with the word xxxDDxDDxD. We denote by W the set of all Dyck words on the
alphabet {x,D}.

Date: May 8, 2014.
1The choise of the alphabet follows [EGH13].
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(0, 0)

(5, 5)

Figure 2. The Dyck path xxxDDxDDxD.

The main goal of this work is to establish a bijection between a family of s-
labelled Eulerian digraphs and the set W . To this end, we provide two algorithms
implementing such bijection in both directions. The connection between Dyck
words and Eulerian digraphs exploits a novel combinatorial structure: a binary
matrix, we call Dyck matrix, representing the cycles of an Eulerian digraph.

Think of the symbol x as multiplication times x, and of the symbol D as differen-
tiation with respect to x. For each Dyck word w, the sequence of Stirling numbers
of the second kind of w, written Sw(k), can be defined as the (unique) sequence
satisfying the following identity

(1) wf(x) =
∑
k≥0

Sw(k)xkDkf(x) .

Observe that, for w = (xD)n, the unique sequence satisfying (1) is the sequence
S(n, k) of Stirling numbers of the second kind. Thus, the sequences Sw(k) generalize
Stirling numbers of the second kind. For more details please refer to [BF12, EGH13],
and references therein.

The results obtained in this work are the basis for a description of Stirling num-
bers of Dyck words in terms of Eulerian digraphs.

The s-labelled Eulerian digraphs are investigated in [CDH14], in the special case
of n cycles of length m. There, the authors show that s-labelled Eulerian digraphs
with k vertices represent a combinatorial interpretation of the generalized Stirling
numbers Sm(n, k) introduced in [BPS03]. Specifically, in [CDH14, Theorem 3.1]
they prove the correspondence between s-labelled Eulerian digraphs and colourings
(hence stable partitions) of disjoint unions of cliques of the same size.

Later, Engbers, Galvin, and Hilyard ([EGH13]) pointed out that the structures
investigated in [CDH14] constitute a combinatorial interpretation of the Stirling
numbers of the second kind associated with Dyck words of the form w = (xmDm)n.

2. A family of Eulerian digraphs, and their cycle matrices

The main data structure our algorithms are based on is a binary matrix, defined
as follows.

Definition 2.1. A non-empty binary matrix M = (mi,j) of size n × k, is a Dyck
matrix if it satisfies the following conditions.
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(M1) There exists 0 < h ≤ k such that m1,j = 1 if and only if j ≤ h.
(M2) For each 1 ≤ i < n, there exist 1 ≤ ai ≤ bi < ci ≤ k such that ai is the

smallest index satisfying mi,ai = 1 and mi+1,ai = 0, bi is the greatest index
such that mi,bi = 1, and ci is the greatest index such that mi+1,ci = 1.
Moreover, the following hold:
(M2.1) mi+1,j = mi,j , for j = 1, . . . , ai − 1;
(M2.2) mi+1,j = 0 , for j = ai, . . . , bi;
(M2.3) mi+1,j = 1 , for j = bi + 1, . . . , ci;
(M2.4) mi+1,j = 0 , for j = ci + 1, . . . , k.

For example, the matrix

(2)

1 1 1 0 0
1 0 0 1 0
0 0 0 0 1


is a Dyck matrix, while the matrix1 1 1 0 0

1 0 0 1 1
0 0 0 0 1


is not, in that it violates condition (M2).

A Dyck matrix M = (mi,j) of size n×k can be associated to an Eulerian digraph
E with n cycles and k vertices, endowed with an order on its cycles. For i = 1, . . . , n,
the ith row represents the ith cycle Ci. Specifically, if U = {j1, j2, . . . , jsi} is the non-
empty set of indices such that mi,j = 1 if and only if j ∈ U , then vj1 , vj2 , . . . , vjsi are

the vertices of Ci, and (vj1 , vj2), (vj2 , vj3), . . . , (vjsi−1
, vjsi ), (vjsi , vj1) are its edges.

If U is a singleton, then Ci is a loop. We say that M is the cycle matrix of E.
One can easily check that the matrix represented in (2) is the cycle matrix of the
Eulerian digraph depicted in Figure 1.

We can characterize the family EW of Eulerian digraph associated to Dyck ma-
trices, as follows. Let s = (s1, s2, . . . , sn), with si > 0 for each i = 1, . . . , n. Denote
by C1, . . . , Cn the cycles of E. The s-labelled Eulerian digraph E belongs to EW if
and only if the following conditions hold.

(E1) No cycle is contained into another cycle.
(E2) If two cycles Ci, Ci+1 share k vertices, these must be the first k vertices of

both cycles.

Finally, we are ready to introduce our main results. Denote by MW the class of
all Dyck matrices.

Theorem 2.2. W and MW are in bijection.

The proof of Theorem 2.2 is provided in Section 5. Next we introduce the algo-
rithms to associate Dyck words with cycle matrices of ordered Eulerian digraphs,
hence Dyck matrices, and viceversa.

3. From Dyck words to Eulerian digraphs

We supply an online algorithm that converts a Dyck word in the corresponding
Dyck matrix. The algorithm implements an incremental construction of the result.
Here, the idea is to split a Dyck word into slopes, i.e. maximal continuous sequences
of x’s, and descents, i.e. maximal continuous sequences of D’s (see [EGH13]). We
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call valley a descent followed by a slope, and peak a slope followed by a descent.
Every peak represents a cycle. For every cycle the number of x’s from the beginning
of the slope to its end is the number of new vertices, with respect to the previous
cycle, while the difference between the number of D’s and the number of x’s repre-
sent the number of nodes shared with the next cycle. Our algorithm incrementally
builds the matrix, generating a new row at the end of each descent.

The function getMatrix, implementing the online conversion algorithm is shown
below. The function receives in input a stream of characters, the Dyck word, and
outputs the associated Dyck matrix.

In line 1 we initialize the four variables X , D, k, and prev. X and D are counters
for the number of x’s and D’s, respectively; the variable k represents the number
of nodes shared by two consecutive cycles; prev is the last character read. In lines
2–10 we process the stream of characters until its end (EOS), checking that D never
exceeds X (if X < D the string does not represent a Dyck word). Line 3 reads
the next character of the stream: if this is a D, we set prev to “D” and increase
D. Otherwise (that is, if the next character is x), we check (line 5) whether the x
follows an x or a D. In the former case, we simply increase X , while in the latter
we can create a new row and insert it in the Dyck matrix. The creation of a new
row (line 7, and line 11) implements the following steps.

(R1) We create a copy R of the previous row. We modify R maintaining only
the first k 1’s, and resetting (to 0) the others. (If we are creating the first
row, R is an empty array.)

(R2) We append to R a sequence of X − k 1’s.

The new row will have X 1’s. In line 8 we insert the new row into the matrix M .
We also need to append a sequence of X − k 0’s to each previous row. In line 9, we
update all the variables, setting prec to “x”, k to X − D, X to k + 1, and D to 0.
The last row is created and added to the matrix in lines 11–12.

getMatrix(s)
1 X = 0 ; D = 0 ; k = 0 ; prev = “x”;

2 repeat
3 if NextChar(s) is “D” then
4 prev = “D”; D = D + 1;

else
5 if prev = “x” then
6 X = X + 1;

else
7 create a new row ;

8 add row to M and fill previous rows with 0’s;

9 prec = “x” ; k = X −D ; X = k + 1 ; D = 0;

end

end

10 remove first character of s ;

until NextChar(s) 6= EOS and X ≥ D;

11 create last row;

12 add last row to M and fill previous rows with 0’s;

13 return M ;
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4. From Eulerian digraphs to Dyck words

Here, we supply an algorithm to convert a Dyck matrix in a Dyck word. The
algorithm implements an incremental construction of the Dyck word. The main
idea is to scan the whole matrix using a vertical two-value window (a 2× 1 binary
matrix), to check the values of two elements lying in consecutive rows, but in the
same column. For practical reasons, we add a “virtual” row of 0’s as a first row and
as a last row of the matrix. After this operation we can start scanning the matrix,
moving horizontally our windows till the end of each row, then skipping to the next
row. Whenever the windows identifies a combination2 (0, 1), we can append an x to
the Dyck word we are building, because such pair represents a vertex that does not
belong to any previous cycle. The pair (0, 0) does not give any information. The
pair (1, 1) represents a node belonging to two consecutive cycles. The pair (1, 0)
denotes a vertex that belongs to a cycle, but does not to the next cycle: whenever
our windows identifies this combination we append a D to the Dyck word.

The function getDyckWord receives in input a Dyck matrix M = (mi,j). (The
algorithm can also deal with a binary stream, representing the matrix read row by
row.)

In line 1 we initialize the two variables i (the counter for rows) and dyck (the
Dyck word to output). (Here, ε denote the empty string.) Then, after adding (line
2) two rows of 0’s in the first and last position of M , we scan the matrix (line 3–8)
checking the values of the windows (mi−1,j ,mi,j). The algorithm uses the function
checkWindow(a, b), which takes two binary values and returns:

• “D”, if a = 1 and b = 0;
• “x”, if a = 0 and b = 1;
• ε, otherwise.

In the code below, EOR denotes the End Of a Row, while EOM denotes the End
Of the Matrix. The symbol ∗ is used to denote the catenation of two strings.

getDyckWord(M = (mi,j))
1 i = 1; dyck = ε;

2 Add a row of 0’s as a first and last row of M ;

3 repeat
4 j = 0;

5 repeat
6 dyck = dyck ∗ checkWindow (mi−1,j ,mi,j);

7 j = j + 1;

until EOR;

8 i = i+ 1;

until EOM;

9 return dyck;

2For convenience, we denote our two-value matrix by its transposed.
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5. Proof of Theorem 2.2, and further remarks.

To prove Theorem 2.2 we show that the algorithm described in Sections 3 and 4
are corrects, in that they associate a Dyck word with a Dyck matrix, and viceversa.
Moreover, we show that both algorithms implement injective maps, and that one
map is the inverse of the other.

From Dyck words to Dyck matrices. The algorithm writes a row of the
matrix at each valley, that is, when an x is read after a D. When the first valley is
met (or at the end of the word, if there are no valleys) a first row is written, with
X 1’s (the number of x read, from the beginning of the word). Such row satisfies
condition (M1) in Definition 2.1, and it will do so also when, in line 8, we append
to the row a number of sequences of 0’s. For every subsequent valley encountered,
the algorithm writes a row with the following properties.

(A) The row has h 1’s below the ones of the previous row, and h is smaller than
the total number of 1’s of the previous row. The positions of such 1’s coincide with
the positions of the first h 1’s of the previous row (lines 8 and 11, described in (R1),
Section 3).

(B) The row has a sequence of u > 1 adjacent 1’s, starting at the index b + 1,
where b is the position of the last 1 in the previous row (lines 8 and 11, described
in (R2), Section 3).

(C) The row has a number of 0’s at the end, since the algorithm appends a
number of sequences of 0’s (line 8).

From (A), (B), and (C), we easily derive that the matrix satisfies the property
(M2) in Definition 2.1. By construction, the mapping of Dyck words into Dyck
matrices is injective.

xxxDD xxxDDxDD xxxDDxDDxD

(
1 1 1

) (
1 1 1 0
1 0 0 1

) 1 1 1 0 0
1 0 0 1 0
0 0 0 0 1


Figure 3. From xxxDDxDDxD to its cycle matrix, step by step.

From Dyck matrices to Dyck words.
Let M = (mi,j) be a Dyck matrix of size n×k, and let M ′ be the matrix obtained

from M by adding a first row and a last row of 0’s, according with line 2 of the
algorithm in Section 4.

Claim 1. Every column of M ′ is formed by

(i) an initial non-empty segment of 0’s, followed by
(ii) a non-empty sequence of 1’s, followed by
(iii) a non-empty sequence of 0’s.

To prove Claim 1, first observe that (i) trivially follows by the fact that we have
added an initial row of 0’s. From condition (M2.3) in Definition 2.1 we deduce that
every column must contain at least a 1. Condition (M2.1) in the same Definition say
that every 1 can be followed by other 1’s, and every 0 by other 0’s. Summarizing,
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we have that every column has an initial segment formed by a non-empty sequence
of 0’s followed by a non-empty sequence of 1’s. The addition of a final row of 0’s
implies that each column has a final non-empty sequence of 0’s.

It remains to show that if in a column a 1 is followed by a 0, then no other
1’s appear in the subsequent positions of the column. Let mr,s be the first 0 that
follows a 1 in the sth column of M , if such element exists (if not, our claim about
M ′ is trivially verified for the column s). Consider again Definition 2.1: by (M2.3),
together with the fact that br−1 < cr−1 (M2), there exists j > s such that mr,j = 1.
Hence, for each i > r, the condition in (M2.3) does not apply for the elements mi,s.
Instead, only conditions in (M2.1) or (M2.2) can apply: in both cases mi,s = 0.

The algorithm in Section 4 scans M ′ by rows using a vertical 2 × 1 window.
Whenever the algorithm hits the combination (0, 1), it appends an x to a word
W (starting by the empty word), and whenever it hits the combination (1, 0), it
appends a D. By Claim 1, W starts with x, and contains exactly n x’s and n D’s.
Moreover, at any position the number of D’s can never exceed the number of x’s.
Indeed, the scan can not hit the combination (1, 0) before hitting (0, 1) on the same
column. Hence, W is a Dyck word.

We do not prove here that the map implemented by the algorithm is injective.
We show, instead, that the maps implemented by the two algorithms are one the
inverse of the other.

Let W be a Dyck word with at least one valley (if there are no valley, our claim
easily follows). We follow row by row the action of the function getMatrix on input
W , and the action of getDyckWord on the rows that are written. The aim is to
show that getDyckWord returns exactly the word W .

Recall that getMatrix writes a row of the matrix at each valley. When the first
valley is met, a sequence of 1’s is written in the first row (after that, a number of
0’s will follow, till the end of the row). The number of these 1’s equals the number
t of x’s of the first slope of W . Since the reverse algorithm adds a row of 0’s as
a first row, when it scans the first two rows of its matrix it begins writing a Dyck
word by appending t x’s to the empty string.

When getMatrix finds a second valley (or the end of W ), it writes the second row
of the matrix, according to (A), (B), and (C) in the previous paragraph. According
to (A), the beginning of the row is a copy of the previous row. When scanning this
part of the row, the reverse algorithm will do nothing.

According to (A) and (B), the following part of the new row is formed by a
sequence of 0’s, and at least one of this 0’s lies below a 1. In correspondence of
such 0’s the reverse algorithm will append some D’s to its output. By (R1) in
Section 3 the number of 0’s lying below 1’s is X − k = D. Thus, it coincides with
the number of D of the first descent of W .

According to (B), a non-empty sequence of 1’s is written in the following part
of the row. Such 1’s lie below 0’s, and, by (R2), the number of such 1’s equals the
number of x in the second slope. Hence, when the reverse algorithm scans this part
of the row, it appends to its output string the correct number of x.

The same occurs until the last row of the matrix is written. At this point the
output of the reverse algorithm coincides with W without its final descent. But
getDyckWord adds a final row of 0’s to the matrix. When this final row is scanned,
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getDyckWord appends a sequence of D’s to its output. Such D’s make the output
string a correct Dyck word. Hence, the output must coincide with W .

6. Conclusion, and future work

We have provided a bijection between the set of all Dyck words and a class of
binary matrices, we call Dyck matrices. Dyck matrices are the cycle matrices of a
family of s-labelled Eulerian digraphs, endowed with an order on their cycles.

Further work aims to describe the Stirling numbers of a Dyck word (see [EGH13])
in terms of Eulerian digraphs. Indeed, it seems possible, following the same ap-
proach as in [CDH14], to obtain, for any Dyck word w, the Stirling number Sw as
the collection of s-labelled Eulerian digraph obtained by taking the graph E as-
sociated with w by the algorithm described in Section 3 and applying appropriate
transformations on E.
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