
Building Bricks with Bricks, with
Mathematica
Pietro Codaraa, Ottavio M. D' Antonaa, Daniele Filarettib

a Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano
b Department of Computing, Imperial College London

1. Introduction
In this work we solve a special case of the problem of building an n-dimensional parallelepiped using a given set of n-
dimensional parallelepipeds. Consider the identity

x3 = xHx - 1L Hx - 2L + 3 xHx - 1L + x.

For sufficiently large x, we associate with x3 a cube with edges of size x, with x Hx - 1L Hx - 2L a parallelepiped with edges x,
x - 1, x - 2, with 3 x Hx - 1L three parallelepipeds of edges x, x - 1, 1, and with x a parallelepiped of edges x, 1, 1. The
problem we takle is the actual construction of the cube using the given parallelepipeds.

In [DDNP90]it was shown how to solve this specific problem and all similar instances in which a (monic) polynomial is
expressed as a linear combination of a persistent basis. That is to say a sequence of polynomials q0 = 1, and
qkHxL = qk-1HxL Hx - rkL for k > 0.

Here, after [Fil10], we deal with a multivariate version of the problem with respect to a basis of polynomials of the same
degree (binomial basis). We show that it is possible to build the parallelepiped associated with a multivariate polynomial
PHx1, ... , xnL = Hx1 - s1L ... Hxn - snL with integer roots, using the parallelepipeds described by the elements of the basis. We
provide an algorithm in Mathematica to solve the problem for each n. Moreover, for n = 2, 3, 4 (in the latter case, only when
a projection is possible) we use Mathematica to display a step by step construction of the parallelepiped PHx1, ... , xnL.

2. Theoretical Background
In this section we supply the mathematical description of the problem we deal with. Consider the relationship

(1)pnHx1, …, xnL ‡ ‰
i‡1

n

Hxi - siL ‡ ‚
SŒn

CS qSHx1, …, xnL

where pn is a monic multilinear polynomial with integer roots and the 2n polynomials qSHx1, …, xnL, where
S Œ n = 81, 2, ..., n<, are a binomial basis (see below) of the vector space of multilinear polynomials.

ü The Binomial Basis

Let, for n > 0, n denote the set 81, 2, ..., n< . With any subset S of n we associate its string function InHSL = b1 b2º⋯ bnwhere

bi =
0 if i – S
1 if i œ S .

This allows us to refer to the subsets of n using a "bit string" notation. (The advantages of this approach will be clear in the
following.) The definition of our basis exploits a complete binary tree Tn = HV , EL of height n > 0 endowed with three
labeling function: q, b and f. The function

q : V Ø :
x j + r

j
: j œ N+ , r œ R> ‹ 81<

is defined as follows. Let v be a node of Tn, vl its left child, and vr its right child. If v is the root of Tn, then qHvL = 1,
qHvrL = x1 + 1, and qHvlL = x1; otherwise, if v has label qHvL ‡ x j+r j

j
we define:

qHvrL =

x j+1+r j+1
j+1

if r j > 0

x j+1+r j+ j
j+1

otherwise ,

qHvlL =

x j+1+r j- j
j+1

if r j > 0

x j+1+r j-1
j+1

otherwise .

The second labeling function, b : E Ø 80, 1<, is simply defined as follows: for each node v œ V the edge connecting v with its
left child has label 1, while the edge connecting v with its right child has label 0 (i.e. bHv, vlL = 1 and bHv, vrL = 0). The
purpose of this function is to define a one-to-one correspondence between the maximal paths on Tn and the subsets of
n = 81, ..., n<. Such correspondence allows us to use the following notation

qSHx1, …, xnL, S Œ n .

This way we can refer to the elements of the basis in terms of subsets instead of paths. Let now
pnHx1, …, xnL ‡ Hx1 + s1L Hx2 + s2Lº⋯ Hxn + snL be an arbitrary multilinear polynomial. The third labeling function
f : V Ø R is defined as follows. If v œ V is the root of Tn , then fHvL = 1. Otherwise, if qHvL = x j + r, we have

fHvL =
r - j +s j if r > 0
r + j -s j otherwise .

We denote by a = v1 Ø v2 Øº⋯Ø vk, with vi œ V for each i = 1, ..., k, a path a in Tn. If v1 is the root and k = n (i.e. vk = vn
is a leaf), a is a maximal path in Tn. We can easily associate a binary string ba of lenght n with each maximal path a by
defining the string:

ba = bHv1, v2L ... bHvn-1, vnL .

We are now able to define the elements of our binomial basis as well as the coefficients of the linear combination expressing
the polynomial pn in (1) in terms of such basis. In other words, given an arbitrary multilinear polynomial pnHx1, …, xnL we
are ready to explicitly write the right handside of (1).

For each S Œ n, let a = v1 Ø v2 Øº⋯Ø vn be the maximal path in Tn such that InHSL = ba, where. Then, we have:

qS = qHv1Lº⋯ qHvnL ,

CS = fHv1Lº⋯ fHvnL .

The values fHvL are not only a part of a product, but have an important meaning on their own. In fact, as we show in the next
subsection, these values define the geometrical structure of the construction. Indeed, [Fil10] shows that this coefficients are a
refinement of Eulerian numbers [Com74].

2 Codara_UGM2011.nb

ü An Example

The following example shows the complete data structure for a generic polynomial p2Hx1, x2L ‡ Hx1 + s1L Hx2 + s2L. In
particular, the figure shows the complete binary tree T2 with vertices and edges properly labeled.

As previously mentioned we now consider each maximal path on T2 in order to obtain both the elements of the basis and the
coefficient that links p2 with this basis. The following table shows the results of the computation.

Construction Algorithm
The algorithm we are going to show takes an arbitrary multilinear polynomial
pnHx1, …, xnL ‡ Hx1 + s1L Hx2 + s2Lº⋯ Hxn + snL as an input and builds the associated n-dimensional parallelepiped using the
smaller n-dimensional parallelepipeds associated with the elements of the binomial basis of degree n.

An auxiliary function sets up the enviroment (i.e. it sets up some variables we will need in the actual construction) and then
calls the recursive procedure Draw, that actually performs the "hard work".

input : The complete binary tree Tn endowed with the labeling functions q and f;
a set of values x1, ..., xn.

output : construction of the n dimensional parallelepiped associated with pn with the
parallelepipeds associated with the elements of the binomial basis of degree

Codara_UGM2011.nb 3

parallelepipeds associated with the elements of the binomial basis of degree n.

origin ô [0,...,0]H* n-times *L
edges ô [0,...,0]H* n-times *L
v ô the root of Tn
Draw HvL

The function Draw recursively visits the tree Tn, meanwhile producing the required construction. It works on the assumption
that our data structure (i.e. the tree Tn endowed with our three labeling functions) not only allows us to define the element of
the binomial basis and relative coefficients, but also contains complete information about the geometrical structure of the
object we are going to build.

The basic idea of the algorithm is as follow. Let v be a vertex of Tn, and let hHvL be its height. Then: (i) if hHvL = n (i.e. v is a
leaf) then v represents the parallelepiped associated with the maximal path ending in v; (ii) if hHvL < n then v represents the
part of construction we obtain by aligning on the Hn - hHvLL-th coordinate the part of construction associated with its left child
(repeated fHvlL times) with the part of construction associated with its right child (repeated fHvrL times).

The procedure works by exaustively visiting Tn and using the informations provided by each node in order to build the
object, following the principles explained in the previous paragraph.

if hHvL = 0 then
for i ô 1 to fHvlL do

draw(vl);
for i ô 1 to fHvrL do

draw(vr);

if hHvL = i then
edges[n - i + 1] ô qHvL HxiL;
for i ô 1 to fHvlL do

draw(vl);
for i ô 1 to fHvrL do

draw(vr);
for j ô i + 1 to n do

origin[j] ô 0;

if hHvL = n then
edges[1] ô qHvL HxnL;
drawBrick(origin, edges);
origin[1] ô origin[1] + edges[1];

3. Functions Tour
In this section we describe the Mathematica implementation of the main algorithm (the one that actually provides a step by
step construction of the parallelepiped) and of the other functions and procedures. Our implementations is built upon a set of
(small) Mathematica functions, which we can easily classify in three main categories.

ü Auxiliary Functions

The following utility functions are frequently used in other parts of the implementation.

Syntax getAllSubset@n]
Input an integer n
Output a list containing all the subsets of 81, ..., n<

4 Codara_UGM2011.nb

getAllSubsets@n_D := H

set = Table@i, 8i, n<D;
subsets = Subsets@setD;
Return@subsetsD;

L;

Syntax fromSubsetToBinary@S, n]
Input an integer n; a subset S Œ n
Output binary string representation of the given subset

fromSubsetToBinary@sub_, n_D := H

bitString = Table@0, 8i, n<D;
For@i = 1, i § n, i++,
If@Count@sub, iD == 0,

bitString@@iDD = 0,
bitString@@iDD = 1

D;
D;
Return@bitStringD;

L;

Syntax getAllBinarySubsets@m]
Input an integer m
Output a list containing the binary string representation of all the subsets of 81, ..., m<. Note that this result is
actually a list containing all binary strings of lenght m

getAllBinarySubsets@m_D := H

subs = getAllSubsets@mD;
l = Length@subsD;
binSubs = Table@0, 8j, l<D;
For@j = 1, j § l, j++,
binSubs@@jDD = fromSubsetToBinary@subs@@jDD, mD;

D;
Return@Sort@binSubsDD;

L;

Syntax mySign@n]
Input an integer n
Output The sign of n, with the exception that zero is treated as negative

mySign@n_D := H

If @n ¹≠ 0, Return@Sign@nDDD;
If@n ã 0, Return@-1DD;

L;

ü Tree Manipulation Functions

The following functions allows to solve the problem both algebrically and geometrically, exploiting the complete binary tree
structure.

Syntax generateTree[n, s]
Input an integer n > 1 and a vector s of lenght n containing the roots of the polynomial p(x1, ... , xn) =
Hx1 + s@1DL ... Hxn + s@nDL
Output the data structure defining Tn
Notes The complete binary tree is implemented using an array of nodes. We point out that this structure is
meant to be manipulatd by the other procedures, not by the user.

 Here is the structure of each node:
 [1]: left child index

[2]: right child index
[3]: f
[4]: root of the associated polynomial (see definition of labeling function q)
[5]: height of the node

Codara_UGM2011.nb 5

Syntax generateTree[n, s]
Input an integer n > 1 and a vector s of lenght n containing the roots of the polynomial p(x1, ... , xn) =
Hx1 + s@1DL ... Hxn + s@nDL
Output the data structure defining Tn
Notes The complete binary tree is implemented using an array of nodes. We point out that this structure is
meant to be manipulatd by the other procedures, not by the user.

 Here is the structure of each node:
 [1]: left child index

[2]: right child index
[3]: f
[4]: root of the associated polynomial (see definition of labeling function q)
[5]: height of the node

generateTree@n_, s_D := H

H* Init the data structure *L
node = 8<;
H* Set up first node HrootL *L
root = 8-1, -1, 1, 0, 0<;
node = Append@node, rootD;
H* Now we start to build the tree *L
i = 0;
While@Length@nodeD < 2^Hn + 1L - 1,
H* for each node, we compute the attributes of its H2L childs *L
j = node@@i + 1DD@@5DD + 1; H* index x_j*L
If@node@@i + 1DD@@4DD >= 0,
rDx = node@@i + 1DD@@4DD + 1; H* r: radice *L
mulDx = Abs@node@@i + 1DD@@4DD - node@@i + 1DD@@5DDD + s@@jDD;
rSx = node@@i + 1DD@@4DD - Hnode@@i + 1DD@@5DDL;
mulSx = Abs@node@@i + 1DD@@4DD + 1D - s@@jDD,
H* else *L
rDx = node@@i + 1DD@@4DD + Hnode@@i + 1DD@@5DDL;
mulDx = Abs@node@@i + 1DD@@4DD - 1D + s@@jDD;
rSx = node@@i + 1DD@@4DD - 1;
mulSx = Abs@node@@i + 1DD@@4DD + node@@i + 1DD@@5DDD - s@@jDD;

D;
H* here we actually "create" the node *L
figlioSx = 8-1, -1, mulSx, rSx, j<;
figlioDx = 8-1, -1, mulDx, rDx, j<;
H* ... and put it in the list*L
node = Append@node, figlioSxD;
node = Append@node, figlioDxD;
H* finally, we update the current
node Hit must contains pointers to its childsL *L

node@@i + 1DD@@1DD = Length@nodeD - 1;
node@@i + 1DD@@2DD = Length@nodeD ;
i = i + 1;

D;
Return@nodeD;

L;

Syntax getRootsAndCoefs@Tn]
Input a data structure representing Tn (usually generated by the function generateTree[])
Output a list (of lists) containing the roots of the 2nelements of the basis; a list containing the coefficients
between the polynomial p and the elements of the basis

6 Codara_UGM2011.nb

getRootsAndCoefs@tree_D := H

n = Log@2, Length@treeD + 1D - 1;
mulVector = Table@0, 8i, n<D;
rootVector = Table@0, 8i, n<D;
roots = 8<;
coef = 8<;
visitAndExtract@tree, 2D;
visitAndExtract@tree, 3D;
Return@8roots, coef<D;

L;

The following procedure is meant to be called exclusively by the other procedure above (getRootsAndCoefs).

visitAndExtract@tree_, node_D := H

nodeType = tree@@nodeDD@@5DD;
mulVector@@nodeTypeDD = tree@@nodeDD@@3DD;
rootVector@@nodeType 1DD = tree@@nodeDD@@4DD;
If @nodeType ã n,
H* current node is a lead *L
roots = Append@roots, rootVectorD;
coef =
Append@coef, Product@mulVector@@iDD, 8i, 1, Length@mulVectorD<DD,

H* current node is not a leaf *L
visitAndExtract@tree, tree@@nodeDD@@1DDD;
visitAndExtract@tree, tree@@nodeDD@@2DDD;

D;
L;

Syntax drawBrick@Tn, node, indeterminates]
Input The tree Tn, as generated by the generateTree procedure; the starting node (usually the root) index.
Output The final construction, in the form of a list of Cuboid objects.

H* This procedure is only for convenience. The
"hard work" is undertaken by the "visit" procedure *L

drawBrick@tree_, node_, soso_D := H

H*colors = 8Red, Green, Blue, Black, White, Gray,
Cyan, Magenta, Yellow, Brown, Orange, Pink, Purple<;*L

colors = 8White, Blue, Yellow, Pink, Green, Red, Cyan, Magenta<;
zyx = soso;
lx = ly = lz = 0;
x0 = y0 = z0 = 0;
fig = 8<;
n = Log@2, Length@treeD + 1D - 1;
Return@visit@tree, nodeDD;

L;

The following procedure implements the algorithm that actually "builds bricks with bricks". Of course, this will only work
for n = 1, 2, 3, and, in some special cases, n = 4. However, the full algorithm [Fil10] is valid for each n.

Codara_UGM2011.nb 7

visit@tree_, node_D := H

H* first, we find out the height of the node *L
nodeType = tree@@nodeDD@@5DD;

H* now, we have different possibilities... *L
Switch @nodeType,
H* t *L
n - 3,
H* visit childs *L
For@i = 1, i § tree@@tree@@nodeDD@@1DDDD@@3DD, i++,
visit@tree, tree@@nodeDD@@1DDD;D;

For@i = 1, i § tree@@tree@@nodeDD@@2DDDD@@3DD, i++,
visit@tree, tree@@nodeDD@@2DDD;D,

H* z *L
n - 2,
lz = zyx@@1DD + tree@@nodeDD@@4DD ;
H* visit childs *L
For@i = 1, i § tree@@tree@@nodeDD@@1DDDD@@3DD, i++,
visit@tree, tree@@nodeDD@@1DDD;D;

For@i = 1, i § tree@@tree@@nodeDD@@2DDDD@@3DD, i++,
visit@tree, tree@@nodeDD@@2DDD;D;

x0 = 0;
y0 = 0;
z0 = z0 + lz,

H* y *L
n - 1,
H* compute lenght of x edge *L
ly = Hzyx@@2DD + tree@@nodeDD@@4DDL ê 2;
H* visit childs *L
For@l = 1, l § tree@@tree@@nodeDD@@1DDDD@@3DD, l++,
visit@tree, tree@@nodeDD@@1DDD;D;

For@l = 1, l § tree@@tree@@nodeDD@@2DDDD@@3DD, l++,
visit@tree, tree@@nodeDD@@2DDD;D;

x0 = 0;
y0 = y0 + ly,

H* x *L
n,
lx = Hzyx@@3DD + tree@@nodeDD@@4DDL ê 3 ;
fig = Append@fig, RandomChoice@colorsDD;
fig = Append@fig, Cuboid@8x0, y0, z0<, 8x0 + lx, y0 + ly, z0 + lz<DD;
H* update position *L
x0 = x0 + lx;

D;
Return@figD;

L;

8 Codara_UGM2011.nb

4. Examples
In this sections we provide complete examples of execution of our main algorithm. We will consider two examples: a 3D
one, and a special 4D example in which we will use a projection to output a 3D draw.

ü A Three-dimensional Example

Clear@n, tree, temp, roots, coefs, radici, pD;

As usually, we fix the roots s1, s2 and s3 of the polynomial/parallelepiped p that we want to build using the elements of the
binomial basis. In this example we have p Hx1 x2 x3L = x1 x2 x3 and hence s1 = s2 = s3 = 0.

s = 80, 0, 0<;

We then fix arbitrary values for x1, x2 and x3 (but remember to pay attention to negative edges).

lzyx = 83, 3, 3<;

Finally we create the complete binary tree T3 with all the required labeling functions, and print a tabular representation of it.

T3 = generateTree@3, sD ;
TableFormAT3, TableHeadings Ø 9None, 9"vs", "vd", "fp", "r", "h"==,

TableSpacing Ø 81, 3<, TableAlignments Ø RightE

vs vd fp r h

2 3 1 0 0
4 5 1 0 1
6 7 0 1 1
8 9 1 -1 2

10 11 1 1 2
12 13 2 0 2
14 15 0 2 2
-1 -1 1 -2 3
-1 -1 2 1 3
-1 -1 2 -1 3
-1 -1 1 2 3
-1 -1 1 -2 3
-1 -1 2 1 3
-1 -1 3 0 3
-1 -1 0 3 3

We are now ready to ask our algorithm to implement the actual construction. As previously mentioned, the actual construc-
tion is made via a list of Mathematica's Cuboid objects.

Codara_UGM2011.nb 9

costruzione = drawBrick@T3, 1, lzyxD;
TableForm@costruzioneD

RGBColor@0, 1, 1D

CuboidA80, 0, 0<, 9
1
3
, 1, 3=E

RGBColor@0, 0, 1D

CuboidA9 1
3
, 0, 0=, 9

5
3
, 1, 3=E

RGBColor@0, 1, 0D

CuboidA9 5
3
, 0, 0=, 83, 1, 3<E

RGBColor@0, 0, 1D

CuboidA80, 1, 0<, 9
2
3
, 3, 3=E

RGBColor@1, 0.5, 0.5D

CuboidA9 2
3
, 1, 0=, 9

4
3
, 3, 3=E

RGBColor@1, 0, 0D

CuboidA9 4
3
, 1, 0=, 83, 3, 3<E

As a final step, we can simply ask Mathematica to plot our list of parallelepipeds.

Graphics3D@costruzione, Axes Ø False, Boxed Ø FalseD

ü A Four-dimensional Example

In this example we show how it is possible to provide a graphical construction for a (particular) four-dimensional case. More
precisely, we are going to construct (as usually, in term of the elements of the binomial basis) the polynomial p = x1 x2 x3 x4
exploiting the fact that all the parallelepipeds associated with the elements of the basis have the fourth edge of the same
lenght: this allows us to implement a projection.

10 Codara_UGM2011.nb

In this example we show how it is possible to provide a graphical construction for a (particular) four-dimensional case. More
precisely, we are going to construct (as usually, in term of the elements of the binomial basis) the polynomial p = x1 x2 x3 x4
exploiting the fact that all the parallelepipeds associated with the elements of the basis have the fourth edge of the same
lenght: this allows us to implement a projection.

Clear@n, tree, temp, roots, coefs, radici, pD;

As usually, we choose values for the roots of p

s = 80, 0, 0, 0<;

and values for x1, x2, x3and x4.

lzyx = 84, 4, 4, 4<;

We are now ready to generate the data structure T4.

Codara_UGM2011.nb 11

T4 = generateTree@4, sD ;
TableFormAT4, TableHeadings Ø 9None, 9"vs", "vd", "fp", "r", "h"==,

TableSpacing Ø 81, 3<, TableAlignments Ø RightE

vs vd fp r h

2 3 1 0 0
4 5 1 0 1
6 7 0 1 1
8 9 1 -1 2

10 11 1 1 2
12 13 2 0 2
14 15 0 2 2
16 17 1 -2 3
18 19 2 1 3
20 21 2 -1 3
22 23 1 2 3
24 25 1 -2 3
26 27 2 1 3
28 29 3 0 3
30 31 0 3 3
-1 -1 1 -3 4
-1 -1 3 1 4
-1 -1 2 -2 4
-1 -1 2 2 4
-1 -1 2 -2 4
-1 -1 2 2 4
-1 -1 3 -1 4
-1 -1 1 3 4
-1 -1 1 -3 4
-1 -1 3 1 4
-1 -1 2 -2 4
-1 -1 2 2 4
-1 -1 1 -3 4
-1 -1 3 1 4
-1 -1 4 0 4
-1 -1 0 4 4

Now we ask the function drawBrick to provide us the with the actual construction. Notice that, in order to allow this example
to work, we used a little trick: the function drawBrick does not start executing (as usually) on the root of T4, but instead it
start executing on its left subtree. This is possible only in a few special cases where one subtree is "empty" (i.e. all the values
for f are zero).

costruzione = drawBrick@T4, 2, lzyxD;
TableForm@costruzioneD

RGBColor@1, 0, 1D

CuboidA80, 0, 0<, 9
1
3
, 1, 3=E

RGBColor@1, 1, 0D

CuboidA9 1
3
, 0, 0=, 82, 1, 3<E

RGBColor@1, 0, 0D

CuboidA82, 0, 0<, 9
11
3
, 1, 3=E

12 Codara_UGM2011.nb

RGBColor@0, 1, 0D

CuboidA9 11
3
, 0, 0=, 9

16
3
, 1, 3=E

RGBColor@1, 0.5, 0.5D

CuboidA80, 1, 0<, 9
2
3
, 7

2
, 3=E

RGBColor@0, 1, 1D

CuboidA9 2
3
, 1, 0=, 9

4
3
, 7

2
, 3=E

RGBColor@0, 1, 0D

CuboidA9 4
3
, 1, 0=, 9

10
3
, 7

2
, 3=E

RGBColor@1, 0, 1D

CuboidA9 10
3
, 1, 0=, 9

16
3
, 7

2
, 3=E

RGBColor@1, 0, 0D

CuboidA90, 7
2
, 0=, 9

2
3
, 6, 3=E

RGBColor@1, 0, 0D

CuboidA9 2
3
, 7

2
, 0=, 9

4
3
, 6, 3=E

GrayLevel@1D

CuboidA9 4
3
, 7

2
, 0=, 9

10
3
, 6, 3=E

GrayLevel@1D

CuboidA9 10
3
, 7

2
, 0=, 9

16
3
, 6, 3=E

RGBColor@1, 1, 0D

CuboidA80, 0, 3<, 9
2
3
, 3

2
, 8=E

RGBColor@0, 0, 1D

CuboidA9 2
3
, 0, 3=, 9

4
3
, 3

2
, 8=E

RGBColor@1, 0, 0D

CuboidA9 4
3
, 0, 3=, 9

10
3
, 3

2
, 8=E

GrayLevel@1D

CuboidA9 10
3
, 0, 3=, 9

16
3
, 3

2
, 8=E

RGBColor@1, 0, 0D

CuboidA90, 3
2
, 3=, 9

2
3
, 3, 8=E

RGBColor@0, 1, 1D

CuboidA9 2
3
, 3

2
, 3=, 9

4
3
, 3, 8=E

RGBColor@1, 0.5, 0.5D

CuboidA9 4
3
, 3

2
, 3=, 9

10
3
, 3, 8=E

GrayLevel@1D

CuboidA9 10
3
, 3

2
, 3=, 9

16
3
, 3, 8=E

RGBColor@1, 0.5, 0.5D
Cuboid@80, 3, 3<, 81, 6, 8<D
RGBColor@0, 1, 0D
Cuboid@81, 3, 3<, 82, 6, 8<D
RGBColor@1, 0.5, 0.5D
Cuboid@82, 3, 3<, 83, 6, 8<D
RGBColor@0, 1, 0D

CuboidA83, 3, 3<, 9
16
3
, 6, 8=E

Finally, we display the result.

Codara_UGM2011.nb 13

Graphics3D@costruzione, Axes Ø False, Boxed Ø FalseD

References
[DDNP90] E.Damiani, O. D'Antona, G. Naldi and L. Pavarino, Tiling bricks with bricks, Stud. Appl. Math. 83 (1990),
no. 2, 91-110.

[Fil10] D. Filaretti, Costruzione di parallelepipedi con parallelepipedi, Master's Thesis, Università degli Studi di
Milano, Italy, 2010.

[Com74] L. Comtet, Advanced combinatorics, Springer, 1974, ISBN 9027704414.

14 Codara_UGM2011.nb

