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1. Introduction
In  this  work  we  solve  a  special  case  of  the  problem  of  building  an  n-dimensional  parallelepiped  using  a  given  set  of  n-
dimensional parallelepipeds. Consider the identity

x3 = xHx - 1L Hx - 2L + 3 xHx - 1L + x.

For sufficiently large x, we associate with x3  a cube with edges of size x, with x Hx - 1L Hx - 2L a parallelepiped with edges x,
x - 1,  x - 2,  with  3 x Hx - 1L  three  parallelepipeds  of  edges  x,  x - 1,  1,  and  with  x  a  parallelepiped  of  edges  x,  1,  1.  The
problem we takle is the actual construction of the cube using the given parallelepipeds. 

In  [DDNP90]it  was  shown how to  solve  this  specific  problem and  all  similar  instances  in  which  a  (monic)  polynomial  is
expressed  as  a  linear  combination  of  a  persistent  basis.  That  is  to  say  a  sequence  of  polynomials  q0 = 1,  and
qkHxL = qk-1HxL Hx - rkL for k > 0.

Here,  after  [Fil10],  we deal  with  a  multivariate  version of  the  problem with  respect  to  a  basis  of  polynomials  of  the  same
degree  (binomial  basis).  We  show that  it  is  possible  to  build  the  parallelepiped  associated  with  a  multivariate  polynomial
PHx1, ... , xnL = Hx1 - s1L ... Hxn - snL  with integer roots, using the parallelepipeds described by the elements of the basis. We
provide an algorithm in Mathematica to solve the problem for each n. Moreover, for n = 2, 3, 4 (in the latter case, only when
a projection is possible) we use Mathematica to display a step by step construction of the parallelepiped PHx1, ... , xnL.

2. Theoretical Background
In this section we supply the mathematical description of the problem we deal with. Consider the relationship

(1)pnHx1, …, xnL ‡ ‰
i‡1

n

Hxi - siL ‡ ‚
SŒn

CS qSHx1, …, xnL

where  pn  is  a  monic  multilinear  polynomial  with  integer  roots  and  the  2n  polynomials  qSHx1, …, xnL,  where
S Œ n = 81, 2, ..., n<, are a binomial basis (see below) of the vector space of multilinear polynomials.



ü  The Binomial Basis

Let, for n > 0, n denote the set 81, 2, ..., n< . With any subset S of  n we associate its string function InHSL = b1 b2º⋯ bnwhere

bi =
0 if i – S
1 if i œ S .

This allows us to refer to the subsets of  n using a "bit string" notation. (The advantages of this approach will be clear in the
following.)  The  definition  of  our  basis  exploits  a  complete  binary  tree  Tn = HV , EL  of  height  n > 0  endowed  with  three
labeling function: q, b and f. The function 

q : V Ø :
x j + r

j
: j œ N+ , r œ R> ‹ 81<

is  defined  as  follows.  Let  v  be  a  node  of  Tn,  vl  its  left  child,  and  vr  its  right  child.  If  v  is  the  root  of  Tn,  then  qHvL = 1,
qHvrL = x1 + 1,  and qHvlL = x1; otherwise, if v has label qHvL ‡ x j+r j

j
we define:

qHvrL =

x j+1+r j+1
j+1

if r j > 0

x j+1+r j+ j
j+1

otherwise ,

qHvlL =

x j+1+r j- j
j+1

if r j > 0

x j+1+r j-1
j+1

otherwise .

The second labeling function,  b : E Ø 80, 1<, is simply defined as follows: for each node v œ V  the edge connecting v with its
left  child  has  label  1,  while  the  edge  connecting  v  with  its  right  child  has  label  0  (i.e.  bHv, vlL = 1  and  bHv, vrL = 0).  The
purpose  of  this  function  is  to  define  a  one-to-one  correspondence  between  the  maximal  paths  on  Tn  and  the  subsets  of
n = 81, ..., n<. Such correspondence allows us to use the following notation

qSHx1, …, xnL, S Œ n .

This  way  we  can  refer  to  the  elements  of  the  basis  in  terms  of  subsets  instead  of  paths.  Let  now
pnHx1, …, xnL ‡ Hx1 + s1L Hx2 + s2Lº⋯ Hxn + snL be  an  arbitrary  multilinear  polynomial.  The  third  labeling  function
f : V Ø R is defined as follows. If v œ V  is the root of Tn , then fHvL = 1. Otherwise, if qHvL = x j + r, we have 

fHvL =
r - j +s j if r > 0
r + j -s j otherwise .

We denote by  a = v1 Ø v2 Øº⋯Ø vk, with vi œ V  for each i = 1, ..., k,  a path a in Tn. If v1 is the root and k = n (i.e. vk = vn
is a leaf),  a  is  a maximal path in Tn.  We can easily associate a binary string ba  of lenght n  with each maximal path a   by
defining the string: 

ba = bHv1, v2L ... bHvn-1, vnL .

We are now able to define the elements of our binomial basis as well as the coefficients of the linear combination expressing
the polynomial pn  in (1) in terms of such basis. In other words, given an arbitrary multilinear polynomial pnHx1, …, xnL we
are ready to explicitly write the right handside of (1).

For each S Œ n, let  a = v1 Ø v2 Øº⋯Ø vn be the maximal path in Tn such that InHSL = ba, where. Then, we have:

qS = qHv1Lº⋯ qHvnL ,

CS = fHv1Lº⋯ fHvnL .

The values fHvL are not only a part of a product, but have an important meaning on their own. In fact, as we show in the next
subsection, these values define the geometrical structure of the construction. Indeed, [Fil10] shows that this coefficients are a
refinement of Eulerian numbers [Com74].
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ü An Example

The  following  example  shows  the  complete  data  structure  for  a  generic  polynomial  p2Hx1, x2L ‡ Hx1 + s1L Hx2 + s2L.  In
particular, the figure shows the complete binary tree T2 with vertices and edges properly labeled.

As previously mentioned we now consider each maximal path on T2 in order to obtain both the elements of the basis and the
coefficient that links p2 with this basis. The following table shows the results of the computation.

Construction Algorithm
The  algorithm  we  are  going  to  show  takes  an  arbitrary  multilinear  polynomial
pnHx1, …, xnL ‡ Hx1 + s1L Hx2 + s2Lº⋯ Hxn + snL as  an  input  and  builds  the  associated  n-dimensional  parallelepiped  using  the
smaller n-dimensional parallelepipeds associated with the elements of the binomial basis of degree n. 

An auxiliary function sets up the enviroment (i.e. it sets up some variables we will need in the actual construction) and then
calls the recursive procedure Draw,  that actually performs the "hard work".

input : The complete binary tree Tn endowed with the labeling functions q and f;
a set of values x1, ..., xn.

output : construction of the n dimensional parallelepiped associated with pn with the
parallelepipeds associated with the elements of the binomial basis of degree
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parallelepipeds associated with the elements of the binomial basis of degree n.

origin ô [0,...,0]H* n-times *L
edges ô [0,...,0]H* n-times *L
v ô the root of Tn
Draw HvL

The function Draw recursively visits the tree Tn, meanwhile producing the required construction. It works on the assumption
that our data structure  (i.e. the tree Tn endowed with our three labeling functions) not only allows us to define the element of
the  binomial  basis  and  relative  coefficients,  but  also  contains  complete  information  about  the  geometrical  structure  of  the
object we are going to build. 

The basic idea of the algorithm is as follow. Let v be a vertex of Tn, and let hHvL be its height. Then: (i) if hHvL = n (i.e. v is a
leaf) then v represents the parallelepiped associated with the maximal path ending in v; (ii) if hHvL < n then v represents the
part of construction we obtain by aligning on the Hn - hHvLL-th coordinate the part of construction associated with its left child
(repeated  fHvlL times) with the part of construction associated with its right child (repeated  fHvrL times).

The  procedure  works  by  exaustively  visiting  Tn  and  using  the  informations  provided  by  each  node  in  order  to  build  the
object, following the principles explained in the previous paragraph.

if hHvL = 0 then
for i ô 1 to fHvlL  do

draw(vl);
for i ô 1 to fHvrL  do

draw(vr);

if hHvL = i then
edges[n - i + 1] ô qHvL HxiL;
for i ô 1 to fHvlL  do

draw(vl);
for i ô 1 to fHvrL  do

draw(vr);
for j ô i + 1 to n do

origin[j] ô 0;

if hHvL = n then
edges[1] ô qHvL HxnL;
drawBrick(origin, edges);
origin[1] ô origin[1] + edges[1];

3. Functions Tour
In this section we describe the Mathematica implementation of the main algorithm (the one that actually provides a step by
step construction of the parallelepiped) and of the other functions and procedures. Our implementations is built upon a set of
(small) Mathematica functions, which we can easily classify in three main categories.

ü Auxiliary Functions

The following utility functions are frequently used in other parts of the implementation.

Syntax  getAllSubset@n]
Input  an integer n
Output a list containing all the subsets of 81, ..., n<
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getAllSubsets@n_D := H

set = Table@i, 8i, n<D;
subsets = Subsets@setD;
Return@subsetsD;

L;

Syntax  fromSubsetToBinary@S, n ]
Input an integer n; a subset S Œ n
Output binary string representation of the given subset

fromSubsetToBinary@sub_, n_D := H

bitString = Table@0, 8i, n<D;
For@i = 1, i § n, i++,
If@Count@sub, iD == 0,

bitString@@iDD = 0,
bitString@@iDD = 1

D;
D;
Return@bitStringD;

L;

Syntax getAllBinarySubsets@m ]
Input an integer m
Output a  list  containing the  binary  string representation of  all  the  subsets  of  81, ..., m<.  Note  that  this  result  is
actually a list containing all binary strings of lenght m

getAllBinarySubsets@m_D := H

subs = getAllSubsets@mD;
l = Length@subsD;
binSubs = Table@0, 8j, l<D;
For@j = 1, j § l, j++,
binSubs@@jDD = fromSubsetToBinary@subs@@jDD, mD;

D;
Return@Sort@binSubsDD;

L;

Syntax mySign@n ]
Input an integer n
Output The sign of n, with the exception that zero is treated as negative 

mySign@n_D := H

If @n ¹≠ 0, Return@Sign@nDDD;
If@n ã 0, Return@-1DD;

L;

ü Tree Manipulation Functions

The following functions allows to solve the problem both algebrically and geometrically, exploiting the complete binary tree
structure.

Syntax generateTree[n, s]
Input an  integer  n > 1  and  a  vector  s  of  lenght  n  containing  the  roots  of  the  polynomial  p(x1, ... , xn )  =
Hx1 + s@1DL ... Hxn + s@nDL
Output the data structure defining Tn
Notes The  complete  binary  tree  is  implemented  using  an  array  of  nodes.  We  point  out  that  this  structure  is
meant to be manipulatd by the other procedures, not by the user.

  Here is the structure of each node:
 [1]: left child index

[2]: right child index
[3]: f
[4]: root of the associated polynomial (see definition of labeling function q)
[5]: height of the node
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Syntax generateTree[n, s]
Input an  integer  n > 1  and  a  vector  s  of  lenght  n  containing  the  roots  of  the  polynomial  p(x1, ... , xn )  =
Hx1 + s@1DL ... Hxn + s@nDL
Output the data structure defining Tn
Notes The  complete  binary  tree  is  implemented  using  an  array  of  nodes.  We  point  out  that  this  structure  is
meant to be manipulatd by the other procedures, not by the user.

  Here is the structure of each node:
 [1]: left child index

[2]: right child index
[3]: f
[4]: root of the associated polynomial (see definition of labeling function q)
[5]: height of the node

generateTree@n_, s_D := H

H* Init the data structure *L
node = 8<;
H* Set up first node HrootL *L
root = 8-1, -1, 1, 0, 0<;
node = Append@node, rootD;
H* Now we start to build the tree *L
i = 0;
While@Length@nodeD < 2^Hn + 1L - 1,
H* for each node, we compute the attributes of its H2L childs *L
j = node@@i + 1DD@@5DD + 1; H* index x_j*L
If@node@@i + 1DD@@4DD >= 0,
rDx = node@@i + 1DD@@4DD + 1; H* r: radice *L
mulDx = Abs@node@@i + 1DD@@4DD - node@@i + 1DD@@5DDD + s@@jDD;
rSx = node@@i + 1DD@@4DD - Hnode@@i + 1DD@@5DDL;
mulSx = Abs@node@@i + 1DD@@4DD + 1D - s@@jDD,
H* else *L
rDx = node@@i + 1DD@@4DD + Hnode@@i + 1DD@@5DDL;
mulDx = Abs@node@@i + 1DD@@4DD - 1D + s@@jDD;
rSx = node@@i + 1DD@@4DD - 1;
mulSx = Abs@node@@i + 1DD@@4DD + node@@i + 1DD@@5DDD - s@@jDD;

D;
H* here we actually "create" the node *L
figlioSx = 8-1, -1, mulSx, rSx, j<;
figlioDx = 8-1, -1, mulDx, rDx, j<;
H* ... and put it in the list*L
node = Append@node, figlioSxD;
node = Append@node, figlioDxD;
H* finally, we update the current
node Hit must contains pointers to its childsL *L

node@@i + 1DD@@1DD = Length@nodeD - 1;
node@@i + 1DD@@2DD = Length@nodeD ;
i = i + 1;

D;
Return@nodeD;

L;

Syntax getRootsAndCoefs@Tn]
Input a data structure representing Tn (usually generated by the function generateTree[])
Output a  list  (of  lists)  containing  the  roots  of  the  2nelements  of  the  basis;  a  list  containing  the  coefficients
between the polynomial p and the elements of the basis
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getRootsAndCoefs@tree_D := H

n = Log@2, Length@treeD + 1D - 1;
mulVector = Table@0, 8i, n<D;
rootVector = Table@0, 8i, n<D;
roots = 8<;
coef = 8<;
visitAndExtract@tree, 2D;
visitAndExtract@tree, 3D;
Return@8roots, coef<D;

L;

The following procedure is meant to be called exclusively by the other procedure above (getRootsAndCoefs).

visitAndExtract@tree_, node_D := H

nodeType = tree@@nodeDD@@5DD;
mulVector@@nodeTypeDD = tree@@nodeDD@@3DD;
rootVector@@nodeType 1DD = tree@@nodeDD@@4DD;
If @nodeType ã n,
H* current node is a lead *L
roots = Append@roots, rootVectorD;
coef =
Append@coef, Product@mulVector@@iDD, 8i, 1, Length@mulVectorD<DD,

H* current node is not a leaf *L
visitAndExtract@tree, tree@@nodeDD@@1DDD;
visitAndExtract@tree, tree@@nodeDD@@2DDD;

D;
L;

Syntax drawBrick@Tn, node, indeterminates]
Input The tree Tn, as generated by the generateTree procedure; the starting node (usually the root) index.
Output The final construction, in the form of a list of Cuboid objects.

H* This procedure is only for convenience. The
"hard work" is undertaken by the "visit" procedure *L

drawBrick@tree_, node_, soso_D := H

H*colors = 8Red, Green, Blue, Black, White, Gray,
Cyan, Magenta, Yellow, Brown, Orange, Pink, Purple<;*L

colors = 8White, Blue, Yellow, Pink, Green, Red, Cyan, Magenta<;
zyx = soso;
lx = ly = lz = 0;
x0 = y0 = z0 = 0;
fig = 8<;
n = Log@2, Length@treeD + 1D - 1;
Return@visit@tree, nodeDD;

L;

The following procedure implements the algorithm that actually "builds bricks with bricks". Of course, this will only work
for n = 1, 2, 3, and, in some special cases, n = 4. However, the full algorithm [Fil10] is valid for each n.
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visit@tree_, node_D := H

H* first, we find out the height of the node *L
nodeType = tree@@nodeDD@@5DD;

H* now, we have different possibilities... *L
Switch @nodeType,
H* t *L
n - 3,
H* visit childs *L
For@i = 1, i § tree@@tree@@nodeDD@@1DDDD@@3DD, i++,
visit@tree, tree@@nodeDD@@1DDD;D;

For@i = 1, i § tree@@tree@@nodeDD@@2DDDD@@3DD, i++,
visit@tree, tree@@nodeDD@@2DDD;D,

H* z *L
n - 2,
lz = zyx@@1DD + tree@@nodeDD@@4DD ;
H* visit childs *L
For@i = 1, i § tree@@tree@@nodeDD@@1DDDD@@3DD, i++,
visit@tree, tree@@nodeDD@@1DDD;D;

For@i = 1, i § tree@@tree@@nodeDD@@2DDDD@@3DD, i++,
visit@tree, tree@@nodeDD@@2DDD;D;

x0 = 0;
y0 = 0;
z0 = z0 + lz,

H* y *L
n - 1,
H* compute lenght of x edge *L
ly = Hzyx@@2DD + tree@@nodeDD@@4DDL ê 2;
H* visit childs *L
For@l = 1, l § tree@@tree@@nodeDD@@1DDDD@@3DD, l++,
visit@tree, tree@@nodeDD@@1DDD;D;

For@l = 1, l § tree@@tree@@nodeDD@@2DDDD@@3DD, l++,
visit@tree, tree@@nodeDD@@2DDD;D;

x0 = 0;
y0 = y0 + ly,

H* x *L
n,
lx = Hzyx@@3DD + tree@@nodeDD@@4DDL ê 3 ;
fig = Append@fig, RandomChoice@colorsDD;
fig = Append@fig, Cuboid@8x0, y0, z0<, 8x0 + lx, y0 + ly, z0 + lz<DD;
H* update position *L
x0 = x0 + lx;

D;
Return@figD;

L;
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4. Examples
In this sections we provide complete examples of execution of our main algorithm. We will consider two examples: a  3D
one, and a special 4D example in which we will use a projection to output a 3D draw.

ü A Three-dimensional Example

Clear@n, tree, temp, roots, coefs, radici, pD;

As usually, we fix the roots s1, s2  and s3  of the polynomial/parallelepiped p that we want to build using the elements of the
binomial basis. In this example we have  p Hx1 x2 x3L = x1 x2 x3 and hence s1 = s2 = s3 = 0.

s = 80, 0, 0<;

We then fix arbitrary values for x1, x2 and x3 (but remember to pay attention to negative edges).

lzyx = 83, 3, 3<;

Finally we create the complete binary tree T3 with all the required labeling functions, and print a tabular representation of it.

T3 = generateTree@3, sD ;
TableFormAT3, TableHeadings Ø 9None, 9"vs", "vd", "fp", "r", "h"==,

TableSpacing Ø 81, 3<, TableAlignments Ø RightE

vs vd fp r h

2 3 1 0 0
4 5 1 0 1
6 7 0 1 1
8 9 1 -1 2

10 11 1 1 2
12 13 2 0 2
14 15 0 2 2
-1 -1 1 -2 3
-1 -1 2 1 3
-1 -1 2 -1 3
-1 -1 1 2 3
-1 -1 1 -2 3
-1 -1 2 1 3
-1 -1 3 0 3
-1 -1 0 3 3

We are now ready to ask our algorithm to implement the actual construction. As previously mentioned, the actual construc-
tion is made via a list of Mathematica's Cuboid objects.
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costruzione = drawBrick@T3, 1, lzyxD;
TableForm@costruzioneD

RGBColor@0, 1, 1D

CuboidA80, 0, 0<, 9
1
3
, 1, 3=E

RGBColor@0, 0, 1D

CuboidA9 1
3
, 0, 0=, 9

5
3
, 1, 3=E

RGBColor@0, 1, 0D

CuboidA9 5
3
, 0, 0=, 83, 1, 3<E

RGBColor@0, 0, 1D

CuboidA80, 1, 0<, 9
2
3
, 3, 3=E

RGBColor@1, 0.5, 0.5D

CuboidA9 2
3
, 1, 0=, 9

4
3
, 3, 3=E

RGBColor@1, 0, 0D

CuboidA9 4
3
, 1, 0=, 83, 3, 3<E

As a final step, we can simply ask Mathematica to plot our list of parallelepipeds.

Graphics3D@costruzione, Axes Ø False, Boxed Ø FalseD

ü A Four-dimensional Example

In this example we show how it is possible to provide a graphical construction for a (particular) four-dimensional case. More
precisely, we are going to construct (as usually, in term of the elements of the binomial basis) the polynomial p = x1 x2 x3 x4
exploiting  the  fact  that  all  the  parallelepipeds  associated  with  the  elements  of  the  basis  have  the  fourth  edge  of  the  same
lenght: this allows us to implement a projection.

10   Codara_UGM2011.nb



In this example we show how it is possible to provide a graphical construction for a (particular) four-dimensional case. More
precisely, we are going to construct (as usually, in term of the elements of the binomial basis) the polynomial p = x1 x2 x3 x4
exploiting  the  fact  that  all  the  parallelepipeds  associated  with  the  elements  of  the  basis  have  the  fourth  edge  of  the  same
lenght: this allows us to implement a projection.

Clear@n, tree, temp, roots, coefs, radici, pD;

As usually, we choose values for the roots of p

s = 80, 0, 0, 0<;

and values for x1, x2, x3and x4.

lzyx = 84, 4, 4, 4<;

We are now ready to generate the data structure T4.
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T4 = generateTree@4, sD ;
TableFormAT4, TableHeadings Ø 9None, 9"vs", "vd", "fp", "r", "h"==,

TableSpacing Ø 81, 3<, TableAlignments Ø RightE

vs vd fp r h

2 3 1 0 0
4 5 1 0 1
6 7 0 1 1
8 9 1 -1 2

10 11 1 1 2
12 13 2 0 2
14 15 0 2 2
16 17 1 -2 3
18 19 2 1 3
20 21 2 -1 3
22 23 1 2 3
24 25 1 -2 3
26 27 2 1 3
28 29 3 0 3
30 31 0 3 3
-1 -1 1 -3 4
-1 -1 3 1 4
-1 -1 2 -2 4
-1 -1 2 2 4
-1 -1 2 -2 4
-1 -1 2 2 4
-1 -1 3 -1 4
-1 -1 1 3 4
-1 -1 1 -3 4
-1 -1 3 1 4
-1 -1 2 -2 4
-1 -1 2 2 4
-1 -1 1 -3 4
-1 -1 3 1 4
-1 -1 4 0 4
-1 -1 0 4 4

Now we ask the function drawBrick to provide us the with the actual construction. Notice that, in order to allow this example
to work, we used a little trick: the function drawBrick does not start executing (as usually) on the root of T4,  but instead it
start executing on its left subtree. This is possible only in a few special cases where one subtree is "empty" (i.e. all the values
for f are zero). 

costruzione = drawBrick@T4, 2, lzyxD;
TableForm@costruzioneD

RGBColor@1, 0, 1D

CuboidA80, 0, 0<, 9
1
3
, 1, 3=E

RGBColor@1, 1, 0D

CuboidA9 1
3
, 0, 0=, 82, 1, 3<E

RGBColor@1, 0, 0D

CuboidA82, 0, 0<, 9
11
3
, 1, 3=E
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RGBColor@0, 1, 0D

CuboidA9 11
3
, 0, 0=, 9

16
3
, 1, 3=E

RGBColor@1, 0.5, 0.5D

CuboidA80, 1, 0<, 9
2
3
, 7

2
, 3=E

RGBColor@0, 1, 1D

CuboidA9 2
3
, 1, 0=, 9

4
3
, 7

2
, 3=E

RGBColor@0, 1, 0D

CuboidA9 4
3
, 1, 0=, 9

10
3
, 7

2
, 3=E

RGBColor@1, 0, 1D

CuboidA9 10
3
, 1, 0=, 9

16
3
, 7

2
, 3=E

RGBColor@1, 0, 0D

CuboidA90, 7
2
, 0=, 9

2
3
, 6, 3=E

RGBColor@1, 0, 0D

CuboidA9 2
3
, 7

2
, 0=, 9

4
3
, 6, 3=E

GrayLevel@1D

CuboidA9 4
3
, 7

2
, 0=, 9

10
3
, 6, 3=E

GrayLevel@1D

CuboidA9 10
3
, 7

2
, 0=, 9

16
3
, 6, 3=E

RGBColor@1, 1, 0D

CuboidA80, 0, 3<, 9
2
3
, 3

2
, 8=E

RGBColor@0, 0, 1D

CuboidA9 2
3
, 0, 3=, 9

4
3
, 3

2
, 8=E

RGBColor@1, 0, 0D

CuboidA9 4
3
, 0, 3=, 9

10
3
, 3

2
, 8=E

GrayLevel@1D

CuboidA9 10
3
, 0, 3=, 9

16
3
, 3

2
, 8=E

RGBColor@1, 0, 0D

CuboidA90, 3
2
, 3=, 9

2
3
, 3, 8=E

RGBColor@0, 1, 1D

CuboidA9 2
3
, 3

2
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RGBColor@1, 0.5, 0.5D

CuboidA9 4
3
, 3

2
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3
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GrayLevel@1D

CuboidA9 10
3
, 3

2
, 3=, 9
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3
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RGBColor@1, 0.5, 0.5D
Cuboid@80, 3, 3<, 81, 6, 8<D
RGBColor@0, 1, 0D
Cuboid@81, 3, 3<, 82, 6, 8<D
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RGBColor@0, 1, 0D

CuboidA83, 3, 3<, 9
16
3
, 6, 8=E

Finally, we display the result.
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