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Abstract

We provide a formula for the number of edges of the Hasse diagram of the indepen-
dent subsets of the hth power of a path ordered by inclusion. For h = 1 such a value
is the number of edges of a Fibonacci cube. We show that, in general, the number
of edges of the diagram is obtained by convolution of a Fibonacci-like sequence with
itself.
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1 Introduction

For a graph G we denote by V (G) the set of its vertices, and by E(G) the
set of its edges.

Definition 1.1 For n, h ≥ 0, the h-power of a path, denoted by P
(h)
n , is

a graph with n vertices v1, v2, . . . , vn such that, for 1 ≤ i, j ≤ n, i ̸= j,
(vi, vj) ∈ E(P

(h)
n ) if and only if |j − i| ≤ h.
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Thus, for instance, P
(0)
n is the graph made of n isolated nodes, and P

(1)
n is the

path with n vertices.

Definition 1.2 An independent subset of a graph G is a subset of V (G) not
containing adjacent vertices.

Notation. (i) We denote by p
(h)
n the number of independent subsets of P

(h)
n .

(ii) We denote by H
(h)
n the Hasse diagram of the poset of independent subsets

of P
(h)
n ordered by inclusion, and by H

(h)
n the number of edges of H

(h)
n .

In this work we evaluate p
(h)
n , and H

(h)
n . Our main result (Theorem 3.4) is

that, for n, h ≥ 0, the sequence H
(h)
n is obtained by convolving the sequence

1, . . . , 1︸ ︷︷ ︸
h

, p
(h)
0 , p

(h)
1 , p

(h)
2 , . . . with itself.

Clearly, H
(0)
n is the n-dimensional cube. Thus, on one hand, our work

generalizes the known formula n2n−1 for the number of edges of the Boolean
lattice with n atoms, obtained by the convolution of the sequence {2n}n≥0 with
itself. From a different perspective, this work could be seen as yet another
generalization of the notion of Fibonacci cube. Indeed, observe that every
independent subset S of P

(h)
n can be represented by a binary string b1b2 · · · bn,

where, for i = 1, . . . , n, bi = 1 if and only if vi ∈ S. More specifically,
each independent subset of P

(h)
n is associated with a binary string of length

n such that the distance between any two 1’s of the string is greater than
h. For h = 1 the binary strings associated with independent subsets of P

(h)
n

are Fibonacci strings of order n, and the Hasse diagram of the set of all such
strings ordered bitwise is a Fibonacci cube of order n (see [5,7]). Fibonacci
cubes were introduced as an interconnection scheme for multicomputers in [3],
and their combinatorial structure has been further investigated, e.g. in [6,7].
Several generalizations of the notion of Fibonacci cubes has been proposed
(see, e.g., [4,5]). As far as we now, our generalization, described in terms of
independent subsets of powers of paths ordered by inclusion, is a new one.

2 The independent subsets of powers of paths

We denote by p
(h)
n,k the number of independent k-subsets of P

(h)
n .

Lemma 2.1 For n, h, k ≥ 0, p
(h)
n,k =

(
n−hk+h

k

)
.

Proof. See [2, Theorem 1], and [1], where we establish a bijection between

independent k-subset ofP
(h)
n and k-subsets of a set with (n−hk+h) elements.2



For n, h ≥ 0, the number of all independent subsets of P
(h)
n is

p
(h)
n =

∑⌈n/(h+1)⌉
k=0 p

(h)
n,k =

∑⌈n/(h+1)⌉
k=0

(
n−hk+h

k

)
.

Remark 2.2 Denote by Fn the nth element of the Fibonacci sequence F1 = 1,
F2 = 1, and Fi = Fi−1 + Fi−2, for i > 2. Then, p

(1)
n = Fn+2.

Lemma 2.3 For n, h ≥ 0, p
(h)
n =

{
n+ 1 if n ≤ h+ 1 ,

p
(h)
n−1 + p

(h)
n−h−1 if n > h+ 1 .

Proof. See the first part of [2, Proof of Theorem 1], or [1]. 2

3 The poset of independent subsets of powers of paths

Figure 1 shows a few Hasse diagrams H
(h)
n . Notice that, as mentioned in the

introduction, for each n, H
(1)
n is a Fibonacci cube.
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Fig. 1. Some H
(h)
n .

Since in H
(h)
n each non-empty independent k-subset covers exactly k inde-

pendent (k − 1)-subsets, we can write

H(h)
n =

⌈n/(h+1)⌉∑
k=1

kp
(h)
n,k =

⌈n/(h+1)⌉∑
k=1

k

(
n− hk + h

k

)
. (1)

Let now T
(n,h)
k,i be the number of independent k-subsets of P

(h)
n containing

the vertex vi, and let, for h, k ≥ 0, n ∈ Z, p̄(h)n,k =

{
p
(h)
0,k if n < 0 ,

p
(h)
n,k if n ≥ 0 .

Lemma 3.1 For n, h, k ≥ 0, and 1 ≤ i ≤ n,

T
(n,h)
k,i =

k−1∑
r=0

p̄
(h)
i−h−1,r p̄

(h)
n−i−h,k−1−r .

Proof. No independent subset of P
(h)
n containing vi contains any of the ele-

ments vi−h, . . . , vi−1, vi+1, . . . , vi+h. Let r and s be non-negative integers whose



sum is k−1. Each independent k-subset of P
(h)
n containing vi can be obtained

by adding vi to a (k − 1)-subset R ∪ S such that

(a) R ⊆ {v1, . . . , vi−h−1} is an independent r-subset of P
(h)
n ;

(b) S ⊆ {vi+h+1, . . . , vn} is an independent s-subset of P
(h)
n .

Viceversa, one can obtain each of this pairs of subsets by removing vi
from an independent k-subset of P

(h)
n containing vi. Thus, T

(n,h)
k,i is obtained

by counting independently the subsets of type (a) and (b). Noting that the

subsets of type (b) are in bijection with the independent s-subsets of P
(h)
n−i−h,

the lemma is proved. 2

In order to obtain our main result, we prepare a lemma.

Lemma 3.2 For positive n,

H(h)
n =

⌈n/(h+1)⌉∑
k=1

n∑
i=1

T
(n,h)
k,i .

Proof. The inner sum counts the number of k-subsets exactly k times, one for
each element of the subset. That is,

∑n
i=1 T

(n,h)
k,i = kp

(h)
n,k. The lemma follows

directly from Equation (1). 2

Next we introduce a family of Fibonacci-like sequences.

Definition 3.3 For h ≥ 0, and n ≥ 1, the h-Fibonacci sequence F (h) =
{F (h)

n }n≥1 is the sequence whose elements are

F (h)
n =

{
1 if n ≤ h+ 1 ,

F
(h)
n−1 + F

(h)
n−h−1 if n > h+ 1.

From Lemma 2.3, and setting for h ≥ 0, and n ∈ Z, p̄(h)n =

{
p
(h)
0 if n < 0 ,

p
(h)
n if n ≥ 0 ,

we have that,
F

(h)
i = p̄

(h)
i−h−1 , for each i ≥ 1 . (2)

Thus, we can write F (h) = 1, . . . , 1︸ ︷︷ ︸
h

, p
(h)
0 , p

(h)
1 , p

(h)
2 , . . . .

In the following, we use the discrete convolution operation ∗, as follows.

(
F (h) ∗ F (h)

)
(n)

.
=

n∑
i=1

F
(h)
i F

(h)
n−i+1 . (3)



Theorem 3.4 For n, h ≥ 0, the following holds.

H
(h)
n =

(
F (h) ∗ F (h)

)
(n) .

Proof. The sum
∑⌈n/(h+1)⌉

k=1 T
(n,h)
k,i counts the number of independent subsets

of P
(k)
n containing vi. We can also obtain such a value by counting the in-

dependent subsets of both {v1, . . . , vi−h−1}, and {vi+h+1, . . . , vn}. Thus, we
have: ∑⌈n/(h+1)⌉

k=1 T
(n,h)
k,i = p̄

(h)
i−h−1 p̄

(h)
n−h−i .

Using Lemma 3.2 we can write

H
(h)
n =

∑⌈n/(h+1)⌉
k=1

∑n
i=1 T

(n,h)
k,i =

∑n
i=1

∑⌈n/(h+1)⌉
k=1 T

(n,h)
k,i =

∑n
i=1 p̄

(h)
i−h−1 p̄

(h)
n−h−i.

By Equation (2) we have
∑n

i=1 p̄
(h)
i−h−1 p̄

(h)
n−h−i =

∑n
i=1 F

(h)
i F

(h)
n−i+1 . By (3), the

theorem is proved. 2

Further properties of coefficients H
(h)
n , and p

(h)
n are discussed in [1]. More-

over, in [1] we investigate the case of powers of cycles, and its connection with
Lucas cubes.
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