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Abstract— This paper is divided into two parts. In the present
Part I, our main objective is to analyse Mamdani-type fuzzy
control systems in logical terms, with special emphasis on the
fuzzy inference process. To that end, we provide our own
inference procedure, cast in the language of standard many-
valued logics. We give an ample discussion of the logical
meaning of our procedure. We eventually show how to fully
recover Mamdani-type fuzzy inference from the latter. In
this sense, then, our proposal may be regarded as a logical
interpretation of Mamdani-type fuzzy inference. In Part II
of this paper, we report on the results of an experiment
on the technical analysis of the financial markets based on
fuzzy techniques. The core algorithm implements the inference
procedure described in this first part of the paper. In Part II, we
will argue that the experimental results support the claim that
our present theoretical analysis provides a sound interpretation
of Mamdani-type fuzzy inference.

I. INTRODUCTION

In 1975, Mamdani and Assilian published their influential
paper [1] on what are nowadays known as Mamdani-type
fuzzy control systems. Their work was inspired by an equally
influential publication by Zadeh [2]. Interest in fuzzy control
has continued ever since, and the literature on the subject has
grown rapidly. A survey of the field as of 1990 with fairly
extensive references may be found in [3]. A more recent
perspective with an eye to future challenges is [4].

Along with interest in the manifold issues related to
the theory of control proper, closer attention to the more
theoretical, genuinely logical aspects of fuzzy control began
to emerge. While this is not the place to provide an account of
the relevant literature, it is appropriate to recall the landmark
work of Hájek [5]. With hindsight, it was Hájek’s book
that did the most to get a number of professional logicians
involved with the logical aspects of fuzzy control. The
present paper, divided into two parts – this one, and [6] –
falls into this line of investigation.

In Hájek’s approach, fuzzy logic is formalised by a many-
valued logical system – at least when the term ‘logic’
is interpreted in a sufficiently narrow sense. Many-valued
logic, in turn, has a long-standing tradition of its own.
To mention just one example, the well-known Łukasiewicz
logic arose out of the efforts of Jan Łukasiewicz in the
Twenties and Thirties to provide a philosophical rebuttal of
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determinism and the related problem of future contingents.
With time, it has grown into a well-developed chapter of
mathematical logic, with thriving connection to several fields
of mathematics and computer science; for a comprehensive
treatment, including historical references, see the standard
handbook [7].

A third largely independent line of development that may
be mentioned here is the philosophy of vagueness. Here,
philosophers have been developing for decades sophisticated
analyses of the semantics of inherently vague statements,
such as e.g. “The ball is red”. Some of their theories
countenance degrees of truth, and are in fact tightly related
to many-valued – and therefore fuzzy – logic; others reject
the use of such degrees for the analysis of vagueness. The
interested reader will find [8] a useful starting point.

Returning to the present paper, our main objective in this
first part is to provide a first attempt at our own logical
analysis of fuzzy control systems in the style of Mamdani,
with special emphasis on the fuzzy inference process. In [5,
Ch. 7], after having developed a unified theory of several
available many-valued logical systems, Hájek provides his
account of what is usually termed approximate inference.
Among other things, he deals with the fuzzy inference
process that essentially goes back to Mamdani’s original
paper [1]. Mamdani’s inference process has evolved into a
standard tool of fuzzy control; it is available, for instance, in
the widespread Fuzzy Logic Toolbox of MATLAB. We shall
throughout call it Mamdani-type (fuzzy) inference. Although
we cannot discuss Hájek’s treatment in detail here, we recall
that it is based on quantified, predicate logic. By contrast,
what we present in this paper is only based on the more
elementary notion of propositional logic. In other words, we
will never need to formalise such statements as “For all x,
x is a red ball”, which involve the (fuzzy, or many-valued)
predicate Red(x). Rather, it will be enough for us to deal
with the simpler (fuzzy, or many-valued) proposition “The
ball is red”, where it will be understood that the proposition
refers to a specific, given ball (which may or may not be red,
or red to a degree.) It may be argued that this is closer in
spirit to the way Mamdani-type inference features in actual
systems. More generally, our aim in this first part of the
paper is to provide a recasting of Mamdani-type inference
in purely logical terms, using standard notions from the
tradition of mathematical logic. As will become clear, we
carry out our analysis mainly on the semantical side; further
syntactical or proof-theoretic considerations are left to future
research. In particular, this entails that we will not attempt
to interpret Mamdani-type inference in terms of the syntactic



consequence relation of a given many-valued logic, although
the work presented here can be read as a preliminary step in
that direction.

Before discussing the organisation of the first part of
this paper, we address a remark by one of the anonymous
referees. It is well known that, in the literature, Mamdani-
type systems are often regarded as mere interpolation tools.
In fact, it is often argued that Mamdani-type inference has
nothing to do with logical inference proper, so that the former
is a misnomer. See e.g. [9], [10] and references therein.
While our paper does not claim to reinterpret Mamdani-
type ‘inference’ as genuine logical inference, it does show
how to recast it in purely logical terms, as mentioned above.
Hence, our results do something to redress the balance of the
widespread view that regards Mamdani-type inference as an
interpolation tool largely devoid of logical significance.

The contents of the first part of this paper are as fol-
lows. In Sect. II, we provide the needed background on
propositional many-valued logics. In Sect. III we analyse
the main components of a fuzzy control system from the
point of view adopted in this paper. We deal in turn with
fuzzification, fuzzy inference, and defuzzification. Our main
focus is on fuzzy inference; our treatment of fuzzification
and defuzzification, being instrumental to fuzzy inference,
is necessarily curt. A similar but more emphatic remark
applies to control theory proper: we do not even touch upon
significant, well-known issues (such as stability) usually
central to control theory. In Sect. III-B.1 we give a detailed
account of Mamdani-type fuzzy inference. Parallel to that,
in Sect. III-B.2 we describe our own alternative, logic-based
procedure. We follow that up in Sect. IV with an extensive
discussion of the logical significance of the procedure spelled
out in Sect. III-B.2. Finally, in Sect. V, we show how to fully
recover Mamdani-type inference from our own procedure,
thus showing that the former is a special case of the latter.
To all effects, then, our proposal in Sect. III-B.2 may be
regarded as a logical interpretation of Mamdani-type fuzzy
inference.

While we believe that theoretical considerations such as
the ones put forth in this paper are important, we also believe
that they should eventually be tested against experience. The
second part of this paper [6] takes a step in this direction.
In Part II, we report on the results of an experiment on the
technical analysis of the financial markets based on fuzzy
techniques. The core algorithm implements our procedure
described in Sect. III-B.2 of this first part of the paper; further
background and a discussion of the results are postponed to
Part II.

II. MANY-VALUED LOGICS BASED ON TRIANGULAR
NORMS

Quite generally, a propositional logic L is determined by
a syntax, a semantics, and an inferential mechanism that ties
the two together. It will be expedient here to recall the details
in the case of classical (or Boolean) logic.

For the syntax, we start with a set V of propositional vari-
ables, or atomic formulas, that represent those propositions

that cannot – or that we do not wish to – analyse into simpler
constituents. To fix ideas, say

V = {X1, X2, . . . , Xn, . . .} . (*)

The set V is the language of L . For our purposes here,
a finite language will always suffice. To (*) we adjoin two
symbols, say > (the verum) and ⊥ (the falsum), that stand
for a proposition that is always true and one that is always
false, respectively; these are the logical constants in the
language. To model compound propositions, we use the log-
ical connectives ∧ (for conjunction), ∨ (for disjunction), →
(for implication), and ¬ (for negation). The usual inductive
definition of a formula now reads as follows.
• All propositional variables are formulas, and so are >

and ⊥.
• If ϕ and ψ are formulas, then so are (ϕ ∧ ψ), (ϕ ∨ ψ),

(ϕ→ ψ), and (¬ϕ).
• Nothing else is a formula.

(In practice, following well-known conventions on the prece-
dence rules among connectives, redundant parentheses are
usually omitted from formulas.) Let us write FORM for the
set of formulas constructed over the language V.

Turning to semantics, in classical logic the meaning of a
formula is assumed to coincide with its truth value. It is fur-
ther assumed that each formula has two possible truth values
only, say 0 – representing falsehood – and 1 – representing
truth. Accordingly, we consider (truth-value) assignments to
formulas, namely, functions µ : FORM → {0, 1} subject to
the familiar conditions:

1) µ(>) = 1, µ(⊥) = 0;
2) µ(ϕ ∧ ψ) = 1 iff both µ(ϕ) = 1 and µ(ψ) = 1;
3) µ(ϕ ∨ ψ) = 1 iff either µ(ϕ) = 1 or µ(ψ) = 1, or

both;
4) µ(ϕ→ ψ) = 0 iff µ(ϕ) = 1 and µ(ψ) = 0;
5) µ(¬ϕ) = 1 iff µ(ϕ) = 0,

for all ϕ,ψ ∈ FORM. Granted that 0 and 1 stand for false-
hood and truth, conditions 1)–5) fix a precise meaning for
the logical connectives. Thus, for instance, 4) prescribes that
→ is to be interpreted as material implication – notoriously
only a very rough approximation of its natural language
counterpart “If . . . then . . . ”, but nonetheless useful. For
future reference, let us note that in classical logic there exists
a crucial relationship between conjunction and implication.
Let µ be any assignment, and consider formulas ϕ, ψ, and
χ. Then

µ(ϕ ∧ χ) ≤ µ(ψ) if and only if µ(χ) ≤ µ(ϕ→ ψ) . (**)

Relationship (**) is known as residuation. Speaking infor-
mally, it says that the truth value of the implication ϕ→ ψ is
as large as it can be, provided one asks that its conjunction
with the truth value of the antecedent ϕ does not exceed
the truth value of the consequent ψ. We shall return to (**)
shortly.

A formula is a tautology if it takes value 1 (the designated
truth value) under each assignment. We can conceive of an
assignment µ as a possible world, determined by the fact



that each sentence ϕ utterable in that world is known to
be either true (µ(ϕ) = 1) or false (µ(ϕ) = 0). On this
account, tautologies are just those formulas that are true in
every possible world, i.e. necessarily true by virtue of their
form alone, not their specific content. A well-known example
is the tertium non datur principle: for any ϕ, ϕ ∨ ¬ϕ must
be true under any circumstance (i.e. for every choice of µ),
independently of the specific content of ϕ.

To link syntax and semantics, one selects an appropriate
subset of formulas AX ⊆ FORMV, called the axioms of the
logic. In the classical case, the set AX can be effectively
described via a finite list of axiom schemata such as e.g.
ϕ → (ψ → ϕ); AX is then the (infinite) set of all formulas
obtainable from such schemata upon instantiating ϕ and
ψ (in the previous example) with two specific formulas.
(Observe that, on this definition, AX is a decidable subset
of FORMV: there is an algorithm that on input ϕ ∈ FORMV
outputs YES if ϕ ∈ FORMV, and NO otherwise.) Finally,
a formula ϕ is provable (from AX) if there is a finite list
ψ1, ψ2, . . . , ψn = ϕ ∈ FORMV such that each ψi either lies
in AX, or is obtainable from two previous formulas in the
list via the modus ponens deduction rule: given formulas
α and α → β, infer β. The completeness theorem shows
that syntax and semantics match perfectly: A formula is
provable if and only if it is a tautology. (The easy half of
this equivalence – the fact that only tautologies are provable
– is more accurately called soundness. We are going to
call ‘completeness theorem’ the whole statement, for short.)
The following generalisation of the completeness theorem is
important. A theory is any set Θ of additional extra-logical
axiom schemata that encode the assumptions required to hold
in a specific application domain of interest. A formula ϕ is a
syntactic consequence of Θ if it is provable from AX∪Θ in
the same sense as before; and it is a semantic consequence of
Θ if each assignment that evaluates each instance of a schema
in Θ to 1, also evaluates ϕ to 1. Now the completeness
theorem for theories reads: For every theory Θ, the syntactic
and semantic consequences of Θ coincide.

The time-honoured machinery above has of course proved
its worth in several domains, both theoretical and applied. As
things stand, its scope is restricted to crisp, yes/no sentences;
can we extend it to encompass fuzzy sentences? Among
a number of alternative frameworks that arguably provide
affirmative answers to that question, we give an account of
the highly influential one systematised by Hájek [5] in the
late Nineties.

Suppose we agree on the following basic assumptions
about L .

1) L has precisely the same syntax (cf. V and FORM)
as classical logic, except that we only take ∧, →, ⊥,
and > as primitive connectives, and we regard ∨ and
¬ as derived connectives whenever possible. While for
classical logic this is an immaterial assumption – one
can define ¬ϕ ≡ ϕ→ ⊥ and ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) –
in a more general setting this is not always the case;
more on this below.

2) Possible worlds are fuzzy, namely, assignments
µ : FORMV → [0, 1] take values in the real unit interval
[0, 1].

3) Absolute truth and falsehood are retained; specifically,
µ(⊥) = 0 and µ(>) = 1 hold for any assignment µ.

4) As in the classical case, L is truth-functional. That is,
for each assignment µ and each formula ϕ, the value
µ(ϕ) only depends on the values that µ assigns to those
atomic propositions in V that occur in ϕ. Equivalently,
this means that the semantical interpretation of the
connectives ∧ and→ is given by appropriate two-place
functions f∧, f→ : [0, 1]× [0, 1]→ [0, 1].

5) As a binary operation on [0, 1], f∧ is associative,
commutative, non-decreasing in both arguments, and
continuous. These assumptions are supposed1 to reflect
common usage of conjunctions of vague sentences in
natural language.

6) For all x, y ∈ [0, 1], f∧(x, 1) = x, and f→(x, y) = 1 if
and only if x ≤ y, so that the restrictions of f∧ and f→
to {0, 1}2 coincide with the interpretation of classical
conjunction and implication.

7) Conjunction and implication are tied together by the
same residuation relationship (**) as in the classical
case. With hindsight, it can be shown that this assump-
tion guarantees that the fuzzy version of the modus
ponens deduction rule is as powerful as it can be if it
is to be sound. For a detailed discussion of this point,
we refer to [5, 2.1.3].

In this scenario, a binary operation known as a triangular
norm (t-norm for short), provides a suitable interpretation for
fuzzy conjunction. Indeed, a t-norm2 ∗ is a continuous binary
function on [0, 1] that is associative, commutative, monotone
(x ≤ y implies x ∗ z ≤ y ∗ z) and has 1 as unit (x ∗ 1 =
x). Importantly, it turns out that each t-norm has a unique
associated binary operation →∗ : [0, 1]× [0, 1]→ [0, 1] such
that the condition

x→∗ y = max {z | x ∗ z ≤ y} (**′)

is satisfied. The upshot of this is that if we then interpret ∧
through ∗ and → through →∗, then because of (**′) the
residuation relationship (**) will continue to hold in the
fuzzy setting, too, as required by our assumption 7). Notice
that x ≤ y is equivalent to x→∗ y = 1, as required by 6).

Given a t-norm ∗, its associated triangular conorm (t-
conorm for short), written +∗, is semantically defined via
a generalised form of the De Morgan Laws, setting x+∗ y =
1 − ((1 − x) ∗ (1 − y)). While many researchers consider
f¬(x) = 1 − x to be the natural interpretation for fuzzy
negation, a syntactic counterpart of f¬ is not always available
within the logic L ; in general, we shall set ¬ϕ ≡ ϕ → ⊥,

1We are not concerned here with the broader debate on the logic of
vagueness. If we were, degrees of truth and truth-functionality themselves
would need defence, let alone the specific choice of a class of functions to
interpret connectives. For an essay on the subject that is sympathetic with
fuzzy logic, the interested reader is referred to [11].

2Throughout, ‘t-norm’ means ‘continuous t-norm’; we never consider
non-continuous t-norms in this paper.



but then ¬ may not satisfy the Double Negation Law ¬¬ϕ↔
ϕ. (As usual, ↔ is a shorthand for (ϕ → ψ) ∧ (ψ → ϕ).)
Similarly, we may not be able to syntactically define a
disjunction ∨ interpreted by +∗. This breaks the classical
symmetry between conjunctions and disjunctions in favour
of the latter. To see why such a choice is not capricious, one
needs to focus on the importance of implication. Of course,
one can interpret ∨ by a t-conorm. But then, crucially, there
will be no relationship between disjunction and implication
akin to (**). Instead, in classical logic there is an analogous
relationship between ∨ and the dual of implication, namely,
logical difference: ϕ 	 ψ ≡ ϕ ∧ ¬ψ. Traditionally, though,
	 has far less importance than →; the latter is intimately
related to inference, whereas the former is not. For instance,
in intuitionistic logic one has precisely the same residuation
relationship between conjunction and implication as in the
classical case, while the classical symmetry between dis-
junction and conjunction is lost. Nonetheless, as we shall
see below, in some important cases the t-conorm does turn
out to be syntactically definable. It should be noted that this
does not necessarily require ¬, as introduced above, to satisfy
the Double Negation Law; cf. e.g. the case of Gödel logic.
By contrast, it can be proved [5, p. 35–36] that – whichever
the t-norm ∗ is – it is possible to reobtain Zadeh’s original
[12] conjunction and disjunction operators min and max in
terms of ∗ and→∗, respectively. Hence, min-conjunction and
max-disjunction, as we shall call them, are always available
in the present setting.

To sum up, the choice of a specific t-norm ∗ determines
a [0, 1]-valued semantics for the propositional logic L ,
with conjunction and implication interpreted via ∗ and →∗,
respectively. On the semantic side, the definition of L is
completed by stipulating that the tautologies of L are again
defined as those formulas that evaluate to 1 in every possible
world.

This framework encompasses as special cases long-studied
many-valued logics such as Łukasiewicz and Gödel logic.
These are determined, respectively, by the Łukasiewicz t-
norm max{0, x + y − 1}, and its residual Łukasiewicz
implication min{1, y+ 1−x}; and by the Gödel (minimum)
t-norm min{x, y}, and its residual

x→min y =

{
1 if x ≤ y,
y otherwise.

Negation (defined by ¬ϕ ≡ ϕ → ⊥, as mentioned above)
is then interpreted by the involution 1 − x in Łukasiewicz
logic, and by the function

f¬(x) =

{
1 if x = 0,
0 otherwise.

in Gödel logic. Further, in both cases a syntactic counter-
part of the appropriate dual t-conorm is available. For the
Łukasiewicz t-norm, the dual t-conorm is max{1, x + y},
and its syntactic counterpart can be defined by the De
Morgan Laws; for the Gödel t-norm, the dual t-conorm is

max{x, y}, and its syntactic counterpart can be defined as
ϕ ∨ ψ ≡ ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ).

For both Łukasiewicz and Gödel logic, a completeness
theorem is available. This uses appropriate finite sets of
axiom schemata, and again modus ponens as the only de-
duction rule. For Gödel logic, one also has completeness
for arbitrary theories; for Łukasiewicz logic, completeness
holds for finitely axiomatisable theories too, but may fail for
arbitrary theories (see [7, Thm. 4.6.6]). We stress that these
completeness theorems syntactically capture the same notion
of tautology (or, more generally, semantic consequence) as
in the classical case – formulas satisfied to degree 1 in every
possible world. In other words, although the logics at hand
are [0, 1]-valued, the inferential mechanism used only allows
deduction of absolutely true propositions from absolutely true
assumptions. For more details, please refer to [5].

III. A LOGICAL ANALYSIS OF MAMDANI-TYPE FUZZY
CONTROL SYSTEMS

A. Fuzzification

We consider (physical) observables x, y, w, . . ., which we
identify with their values, as measured on the normalised3

scale [0, 1]. We write x(t) ∈ [0, 1] for the value of x measured
at time t. With each such observable x, y, w, . . ., we associate
a finite set of atomic sentences

X1, X2, . . . , Y1, Y2 . . . , W1,W2, . . . (1)

The language V associated to the (control) system is then
the union of the atomic sentences (1). Consider now the
set of formulas FORMV over V. By a fuzzy set over the
observable x we just mean a function f : [0, 1]→ [0, 1]. By
the fuzzification of the observables x, y, w, . . . we mean the
choice of a finite number of fuzzy sets over each observable;
this yields functions

f1, f2, . . . , g1, g2 . . . , h1, h2, . . . . (2)

In respect of logic, the rôle of f1, say, is to provide a
means of assigning a degree of truth (or truth value) to the
corresponding atomic sentence X1. In detail, suppose at time
t we observe x to be x(t) ∈ [0, 1]. Then the degree of truth
of X1 is f1(x(t)). It follows at once that the fuzzification
of the observables x, y, w, . . . uniquely determines at each
instant t an atomic assignment (i.e. an assignment to atomic
sentences) µ̄ : V → [0, 1] by

µ̄t(Xi) = fi(x(t)) , µ̄t(Yi) = gi(y(t)) , . . . (3)

Up to this point, it is immaterial which specific logic we
choose to model the system. We now need to make that
choice. Fix a many-valued logic L as in Sect. II, by
choosing a t-norm ∗ : [0, 1]2 → [0, 1]. Then, since L is truth-
functional, the atomic assignment (3) uniquely extends to an
assignment

µt : FORMV → [0, 1] . (4)

3In the present theoretical context, we gloss over the (often significant)
issues involved in normalisation for actual applications.



To sum up, given the fuzzification (2) and the logic L , at
each instant t we are able to assign a unique truth value to
each formula ϕ ∈ FORMV of L .

Remark: Given the approach we are following in this
paper, a relevant issue one may raise at this point is to
clarify the rôle of fuzzy sets in purely logical terms. Since the
main focus of this paper is the logical interpretation of fuzzy
inference, due to space limitations we are unable to tackle
that issue here. However, we do mention in passing that the
chosen fuzzy sets in fact provide an encoding of a theory over
the base logic L ; and that techniques are available – possibly
under appropriate assumptions – to afford the extraction of
that theory as an explicit axiomatisation. In the case of Gödel
logic, for families of fuzzy sets that form a Ruspini partition,
see the results obtained in [13]; cf. also [14].

B. Fuzzy Inference
We now come to the core of fuzzy control systems,

namely, fuzzy inference. We discuss Mamdani-type inference
first, and then turn to our own recasting in logical terms.

1) Mamdani-type Fuzzy Inference: Our account here will
not match Mamdani’s original paper [1] exactly; it will
rather aim at being consistent with current common practice.
Indeed, it may be read as a summary of the implementation
of Mamdani-type inference provided by MATLAB’s Fuzzy
Logic Toolbox. This being understood, fuzzy inference may
be summarised as follows.
(M1) Partition the observables x, y, w, . . . into two disjoint,

non-empty subsets, the input observables {x, y . . .},
and the output (controlled) observables {w, . . .}. Par-
tition the language V accordingly, into the sets of
input variables {X1, X2, . . . , Y1, Y2, . . .}, and out-
put variables {W1,W2, . . .}. Also partition the fuzzy
sets accordingly, into the collections of input fuzzy
sets {f1, f2, . . . , g1, g2, . . .}, and output fuzzy sets
{h1, h2, . . .}.

(M2) Fix a finite set of rules of the form:
IF x is (NOT) Xi AND y is (NOT) Yj AND . . .

THEN w is (NOT) Wk .

When in ‘ x is (NOT) Xi ’ the NOT is included, we
say Xi is negated, and similarly for Yj ,Wk, . . . .

(M3) Given the observed input values x(t), y(t), . . . at time
t, for each rule R as in (M2), set

Rt = min {f ′i(x(t)), g′j(y(t)), . . .} ∈ [0, 1] ,

where

f ′i(x(t)) =

{
1− fi(x(t)) if Xi is negated in R;
fi(x(t)) otherwise.

and similarly for g′j(y(t)), . . . .
(M4) For each Rt computed in (M3), define the output fuzzy

set of rule R (at time t) as the function htk : [0, 1] →
[0, 1] given by

htk(w) =


min {Rt, 1− hk(w)} if Wk is negated

in R;
min {Rt, hk(w)} otherwise.

(M5) Define the (aggregate) output fuzzy set (at time t) as
the function Ft : [0, 1]→ [0, 1] given by

Ft = max {htk} ,

where the maximum (computed pointwise) ranges over
the output fuzzy sets, as in (M4), of all rules.

Thus, at each instant t, Mamdani-type inference produces as
a result the fuzzy set Ft as in (M5).

Remark: Several variants of the procedure described above
are used in practice. Let us mention some common ones.
• One can allow an OR connective in the rules’ antecedents

along with AND, interpreting it by a suitable operator
such as the maximum or some other t-conorm.

• One can use a different operator than the minimum –
e.g. a different t-norm – to interpret the AND connective.

• One can use a different operator than the maximum –
e.g. a different t-conorm – to compute the aggregate
fuzzy set.

• Somewhat less frequently, one can use a different oper-
ator than the minimum to interpret the IF...THEN...

connective in computing the output fuzzy set of each
rule.

• Applications generally need to deal with more than one
output observable. Here we chose to describe the case
with one observable only, to avoid a heavier notation;
the constraint is immaterial for our present purposes.

2) Logic-based Alternative to Mamdani-type Inference:
We describe our own procedure to obtain an “output fuzzy
set” given values for the “input observables”. Extended
comments on its logical meaning, and on its relationship to
Mamdani-type inference are provided in Sect. IV and V.
(L0) Fix a t-norm ∗, and its corresponding logic L (cf. Sect.

II).
(L1) Same as (M1).
(L2) Fix a theory Θ in the language V. The most impor-

tant case in applications is when V is finite, and Θ
is finitely axiomatisable; we assume this throughout.
Then Θ can be safely thought of as a finite set
of formulas θ1, . . . , θm in the finite set of variables
V = {X1, . . . , Y1, . . . ,W1, . . .}, or even as the single
formula

Θ = θ1 ∧ · · · ∧ θm , (†)

where ∧ is the conjunction of L , semantically inter-
preted by ∗. In the sequel, we work with Θ as in (†).

(L3) Define the function TΘ as the truth-value function of Θ.
That is, given x, y, w, . . . ∈ [0, 1], consider the unique
assignment µ : FORMV → [0, 1] such that µ(Xi) =
fi(x), µ(Yj) = fj(y), µ(Wk) = hk(w), . . . . Then

TΘ(x, y, . . . , w, . . .) = µ(Θ) .

(L4) Given the observed values x(t), y(t), . . . at time t,
define the output truth-value function

Tt : [0, 1]n → [0, 1] ,



where n is the cardinality of the set of output variables
{W1, . . .}, by

Tt(w, . . .) = TΘ(x(t), y(t), . . . , w, . . .) .

Here, note that x(t), y(t), . . . are constants, whereas
w, . . . are not.

(L5) For each instant t, set

Mt =
{
p ∈ [0, 1]n | Tt(p) is maximal in

the range of Tt
}

;

we call Mt the set of maximising output values.

Thus, at each instant t, the procedure above yields as a result
the set of maximising output values Mt as in (L5).

C. Defuzzification

In light of (M5) above, the outcome of a Mamdani-type
inference at time t is the fuzzy set Ft : [0, 1] → [0, 1].
The domain of Ft is the normalised range of values of the
physical observable w to be controlled. For actual control to
be achieved, one must set w to a specific value wt ∈ [0, 1].
This is effected via defuzzification of Ft. Throughout this
paper and its sequel, we assume that wt is computed from
Ft using the well-known mean of maxima defuzzification
method. With an eye to the second, experimental part of
this piece of work [6], let us merely indicate how one
computes wt when using a discrete approximation to Ft.
Choose an integer N ≥ 1, and consider the set of sample
points S = { 1

n | n = 0, 1, . . . , N} ⊆ [0, 1]. From these,
extract those that maximise Ft over S; i.e., set Mt = {s ∈
S | Ft(s) = maxw∈S Ft(w)}. Finally, set

wt =

∑
s∈Mt

s

|Mt|
, (MOM)

where |A| denotes the cardinality of a set A.
Concerning the procedure described in Sect. III-B.2, in

light of (L5) above its outcome is the set Mt of maximising
output values. To extract a single value from this set, let us
assume that only one output observable w is given, in line
with our presentation of Mamdani-type inference. Then we
again obtain wt by computing the average in (MOM).

In summary, from the point of view of defuzzification the
two procedures considered in Sect. III-B are in agreement –
they both use the mean of maxima method.

Remark: While defuzzification is an important topic with
a substantial literature, here we are not concerned with it,
where the focus is on inference. A relevant research problem
along the lines discussed in this paper is to clarify the rôle
of defuzzification in respect of logic. Although this is the
subject of current investigation, let us mention in passing
the paper [15], where the connection between defuzzification
methods and the expected truth value of formulas (with
respect to a measure on the set of possible worlds) is
discussed for Gödel logic.

IV. DISCUSSION AND REMARKS

We begin discussing the basic ideas behind the proce-
dure in Sect. III-B.2. The theory Θ provides a linguistic
description of relationships4 among the atomic sentences
Xi, Yj ,Wk, . . . . In general, it is customary to think of Θ
as reflecting an agent’s knowledge about the meaning –
more precisely, about the intended interpretation – of such
sentences in the actual world. For instance, if the intended
interpretation of X1 is “It is cold in this room”, and that of
X2 is “It is warm in this room”, then the agent’s knowledge
about the meaning of the atomic propositions may include
the fact that ¬(X1 ∨ ¬X2) is always true.5 Formally, this
precisely amounts to saying that the formula ¬(X1 ∨ ¬X2)
is part of the theory Θ.

However, in certain contexts it is appropriate to think of Θ
as more than just a formal model of an agent’s knowledge.
For if our aim is, say, to achieve control of a given physical
system, then Θ should be thought of as a summary of our
knowledge about the system, along with a description of
the desirable states of the system. Continuing our previous
example, suppose we are attempting to keep the temperature
of the room within a certain range, so that it is not too hot
nor is it too cold, by (automatically) operating the heating
system in the room. Then Θ might also include – besides
the previous formula ¬(X1 ∨ ¬X2), and among others – a
formula modelling the sentence:

“If this room is cold, then the heating system is on.”

For this, we prepare an additional propositional variable W1,
whose intended interpretation is “The heating system is on”,
and we add the formula X1 → W1 to our theory Θ. There
are three key points to note about X1 →W1 in this example.
First:

(P1) It is certainly possible that, in the actual
world, X1 →W1 is false.6

For it is perfectly conceivable that the room is cold, and
the heating system is turned off. Hence X1 →W1 does not
embody knowledge about the real world in the same sense
as ¬(X1 ∨ ¬X2) did. Further:

(P2) It is likewise possible that, in the actual
world, X1 → W1 is true, and that ¬(X1 → W1)
fails to be true.

For it is perfectly conceivable that the room is cold, and
the heating system is turned on. Thus, (P1) and (P2) tell
us that there are possible worlds – i.e. sufficiently specified
situations – that are consistent with the truth of X1 →

4Strictly speaking, such relations are encoded by Θ, along with the chosen
fuzzification, as mentioned in the Remark at the end of Sect. III-A.

5Of course, if the agent in question is a many-valued reasoner, she may
not necessarily want to assume that much, depending on her own reading
of “cold” and “warm”, i.e. on her specific choice of the logic L used to
model those notions and their mutual relationships.

6Or false to some degree, in the many-valued setting. The general point
we are making in this discussion does not depend in an essential manner
on the fact that the underlying logic L be many-valued, nor does it depend
on the specific semantics of connectives.



W1, and others that are consistent with its falsehood. This
notwithstanding, we have:

(P3) In order to achieve control in our present
example, it is reasonable to include X1 → W1 in
our theory Θ, whereas it would not be reasonable
to include its negation ¬(X1 →W1).

Indeed, let us assume for the sake of argument that the
underlying logic L is Boolean, and let us see how X1 →
W1 may be used to achieve (partial) control of the room
temperature, following the idea behind the procedure in Sect.
III-B.2. The crux of (L0–L5) is simple to state:

Given the truth values of the input propositional
variables Xi, Yj , . . . , choose truth values for the
output propositional variables Wk, . . . , that make
the overall truth value of Θ as large as possible.

In our example, then, what we need to do is simply trying to
make X1 →W1 as true as possible – i.e. just true, in classical
logic – by choosing the truth value of W1, given the truth
value of X1. So if we start from a situation where X1 is true,
we have no choice for the truth value of W1 – it must be
1. Of course, in operational terms, this amounts to saying
that whenever the room is cold, we must turn the heating
system on. On the other hand, if we replaced (X1 → W1)
by ¬(X1 →W1), then we would leave the heating system off
even if the room is cold. While that situation, as discussed,
corresponds to a perfectly legitimate possible world, it is one
that is not desirable for our present aims. In the language of
control systems, we can sum up our discussion so far as
follows.

The theory Θ is to be thought of as a description
of those states in which the system is controlled,
i.e. of the desirable states of the system.

Insofar as Θ provides a good description of the desirable
states, one can use it as a recipe to control the system. That
recipe is what steps (L0–L5) in Sect. III-B.2 spell out in
detail. We now remark on some of the main differences
between (L0–L5) and (M1–M5), though it is in fact the
similarities that we regard as more important, a point we
shall return to these in the next section.
• The syntactic restrictions in (M2) are guided by the

background assumption that one is aiming at approx-
imating a function, namely, the control function of the
system. By contrast, in (L2) we put no restriction at all
on Θ. Indeed, in contexts where one uses (L0–L5) not
to control a system, but, say, to take a decision on the
basis of vague information, it would not be appropriate
to restrict Θ to implicative formulas. Additional research
may lead to reasonable syntactic constraints for Θ under
various assumptions.

• The procedure in (L0–L5) is fully general in another
respect, namely, the choice of the logic L . The latter
can be any t-norm-based logic as in Sect. II, provided
only L enjoys completeness for (finitely axiomatis-
able) theories with respect to its [0, 1]-valued semantics.
Although we cannot discuss the significance of this

completeness requirement in full here, we provide the
following informal comment, by way of illustration of
some of the issues involved. In the absence of com-
pleteness, there may be unobservable possible worlds
described by Θ. That is, Θ describes situations which
can actually take place (assuming Θ is a faithful lin-
guistic description of our intended models), but that do
not correspond to any choice of values xt, yt, wt . . . ∈
[0, 1] of the physical observables. That happens, for
instance, if L is Łukasiewicz logic, and Θ is a so-called
non-semisimple theory; in this case, it can be shown that
Θ is necessarily not finitely axiomatisable. Details on
this phenomenon can be found in [7].

• In the two procedures, (M5) and (L4) are analogous
steps. That is, the output aggregate fuzzy set Ft in the
former corresponds, conceptually, to the output truth-
value function Tt in the latter. But whereas Mamdani-
type inference has Ft as its end result, our own version
does not. We take one more step, and compute the
set of maximising output values Mt in (L5). We do
so because the logical bases of our procedure make
(L5) a completely justified step – more than that, an
unavoidable one. Indeed, observe that Mt determines
the collection of possible worlds wherein Θ is satisfied
to maximal degree, given the truth values of the input
propositional variables Xi, Yj , . . . . Now if we take
seriously the claims that (i) L is a logic of vague
propositions suited to our problem, so that larger truth
values of propositions indicate statements that are closer
to absolute truth, and that (ii) Θ expresses, in the
language of L , sound (possibly partial) knowledge
about the problem at hand and the desirable states of
the system, then no other conclusion is possible than
the following one:

The more we can make Θ closer to truth in the
actual world (by acting on the truth values of the
output variables Wk, . . . ), the closer we are to
attaining a desirable state of the system.

Settling for situations where Θ is satisfied to lower
degrees cannot possibly improve the situation, unless
we reject either (i) or (ii). Hence, if the end result of
the procedure is unsatisfactory in a specific case, the
problem must lie with L or with Θ, not with (L5).

• By contrast, there is no way that Θ can help us in
selecting a specific element of Mt – which is why
the output of our procedure must be the whole of Mt.
Indeed:

Two distinct elements of the set Mt in (L5) are
entirely indiscernible on the grounds of the knowl-
edge embodied by Θ.

In other words, Θ cannot help us at all with defuzzifi-
cation.

• The combined effect of (M1–M5) and (MOM) method
is equivalent to the combined effect of (L0–L5) and
(MOM) for a specific choice of L . This will be dis-
cussed in the next section. It should nonetheless be



observed that the two procedures differ at a fundamental
level in their views of defuzzification. Mamdani-type
systems adhere to the traditional fuzzy view that the
whole information carried by the output fuzzy set may
be used to obtain a crisp output value. On the other
hand, our procedure insists that it is always appropriate
to consider maximising values of the output truth-
value function, for the reasons expounded above. The
maximisation process is therefore to be seen as an
integral part of the procedure.

V. RECOVERING MAMDANI-TYPE FUZZY INFERENCE

In this short section we indicate how to recover the
Mamdani-type fuzzy inference (M1–M5) described in Sect.
III-B.1 as a special case of our procedure (L0–L5). To this
end, we let L be Łukasiewicz logic. Recall that ¬ is then
interpreted by f¬(x) = 1− x, and that min-conjunction and
max-disjunction are definable. In the rest of this section, we
denote the latter by ∧ and ∨, respectively. The remaining
connectives of Łukasiewicz logic will play no rôle for our
purposes here. Given now the fuzzy sets for the Mamdani-
type system

To see that with the assumptions above (L0–L5) reduce to
(M1–M5), consider by way of example the two rules

IF x is X1 AND y is Y1 THEN w is W1 . (R1)
IF x is X2 THEN w is NOT W2 . (R1)

Translate (R1) and (R2) into a formula of L as follows:

θ = (X1 ∧ Y1 ∧W1) ∨ (X2 ∧ ¬W2) .

Let Θ be the theory over L axiomatised by θ; cf. with
(†) in (L2). Now fix an instant of time t, along with xt,
yt ∈ [0, 1]. To these observed values correspond truth values
f1(xt), f2(xt), g1(yt) of X1, X2, and Y1, respectively. Set
m = min{f1(xt), f2(xt), g1(yt)}. Then the output truth-
value function Tt in (L4) is given by

max(min(f1(xt), g1(yt), h1(w)),min(f2(xt), 1− h2(w))).

Direct inspection shows that the output fuzzy set Ft(w) of
(M1–M5) coincides with Tt(w), as was to be shown.

It is clear that the example we considered here is readily
extended to cover the general case.
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