
Recursive Formulas to Compute Coproducts of
Finite Gödel Algebras and Related Structures

Stefano Aguzzoli
and Pietro Codara

Dept. of Computer Science
Università degli Studi di Milano

Via Comelico 39-41, Milano, Italy
Email: aguzzoli@di.unimi.it and pietro@cody.it

Abstract—Gödel logic and its algebraic semantics, namely, the
variety of Gödel algebras, play a major rôle in mathematical
fuzzy logic. The category of finite Gödel algebras and their
homomorphisms is dually equivalent to the category FF of
finite forests and order-preserving open maps. The combinatorial
nature of FF allows to reduce the usually difficult problem of
computing coproducts of algebras and their cardinalities to the
combinatorial problem of computing products of finite forests.
In this paper we propose a neat, purely combinatorial, recursive
formula to compute the product objects. Further, we formulate a
dual equivalence between finite Gödel∆-algebras and a category
of finite multisets of finite chains, and we provide recursive
formulas to compute coproducts, and their cardinalities, in the
categories of finite Gödel hoops and of finite Gödel∆-algebras.

I. INTRODUCTION

Gödel logic and its algebraic semantics, the variety of
Gödel algebras, play a major rôle in mathematical fuzzy logic,
for it is the logic of one of the fundamental continuous t-norms.

Computing coproducts between algebras in a variety of
interest for fuzzy logicians, bears an interest which is not
only theoretical. As a matter of fact, assume that you have
two distinct algebras A and B in a chosen variety capturing
the behaviour of some observables: one set of observables for
A and a disjoint set of observables for B. We may suppose
that the interrelations between observables in these sets are
formulated as identities between terms built with elements of
the aforementioned algebras. Algebraically, this means that A
and B are each presented by a distinct set of identities. Then,
if one has to model the joint behaviour of these two sets
of observables under the assumption of minimal interaction
between the two sets, using the same kind of algebraic model,
then one has to compute the algebra presented by the (disjoint)
union of the identities presenting A and B. This amounts
exactly to compute the coproduct of A and B in the chosen
variety (of course, when the interaction between the two sets
is not minimal, one has to resort to fibred coproducts).

In general, computing the coproduct object A+B (that is,
the algebraic structure of A+B) of two algebras A and B in a
given variety is a difficult problem. For instance, consider the
case that A and B are both meant to model set of observables
which do not require the specification of any interrelation,
that is, they are both presented by the empty set of identities.
This means that A and B are free algebras (over some sets
of generators) in their variety. Then A + B, presented again
emptily over the disjoint union of the two sets of generators,

is, by definition, a free algebra in the same variety, and the
determination of the structure of free algebras in a given variety
can notoriously be a really tough task to embark on.

For the case of Gödel algebras, the knowledge of a com-
binatorial category dually equivalent to the finite slice of the
algebraic one greatly simplifies this task.

As is well known, the category of finite Gödel algebras
and their homomorphisms is dually equivalent to the cate-
gory FF of finite forests and order-preserving open maps.
The combinatorial nature of FF allows to reduce the usually
difficult problem of computing coproducts of algebras and
their cardinalities to the combinatorial problem of computing
products of finite forests. Notice however, that the computation
of the product of finite forests is not a trivial task: as a matter
of fact the underlying set of the product F ×G of two finite
forests F and G is in general not the cartesian product of the
underlying sets of F and G.

While general procedures to compute the product in FF
are available [12] [11], [16], they are rather indirect, relying
on intermediate steps such as labelings, paths, and other
devices, or being produced by unfolding much more general
constructions.

In this paper we propose a neat, purely combinatorial,
recursive formula to compute the product objects.

While this formula has been already applied in recent
literature ([3], [5], [10, Chap. IX] to cite a few), there is no
single place where it is fully proved. In this note we present
a detailed proof of the validity of this recursive formula.

Further, we formulate a dual equivalence between finite
Gödel∆-algebras and a category of finite multisets of finite
chains, and we provide recursive formulas to compute coprod-
ucts, and their cardinalities, in the categories of finite Gödel
hoops and of finite Gödel∆-algebras.

II. GÖDEL ALGEBRAS AND FORESTS

In this section we define the two categories of Gödel
algebras and homomorphisms, and of finite forests and order-
preserving open maps, and we recall their well-known dual
equivalence. Further we state basic properties of the category
of finite forests.

A. Gödel algebras, MTL-algebras, residuated lattices

An MTL-algebra is a systemA = (A, ∗,→,∨,∧, 0, 1) such
that:

• (A,∨,∧, 0, 1) is a bounded distributive lattice;

• (A, ∗, 1) is a commutative monoid (notice, the property
that 1 is both the top of the lattice and the unit of the
monoid is referred to as the integrality of the lattice
A);

• A is residuated, that is, x ∗ z ≤ y iff z ≤ x → y for
all x, y, z ∈ A;

• A is prelinear, that is, (x→ y)∨ (y → x) = 1 for all
x, y ∈ A.

Equivalently, let us call prelinear semihoop a prelinear, in-
tegral, distributive, commutative, residuated lattice. Then an
MTL-algebra is a bounded prelinear semihoop.

MTL-algebras are major objects of study in mathematical
fuzzy logic, as the associated logic, Monoidal t-norm based
logic, introduced by Esteva and Godo in [14], was proved to
be the logic of all left-continuous t-norms and their residua
by Jenei and Montagna in [20]. Among them, a major rôle is
played by Gödel algebras, and their associated logic, Gödel-
Dummett logic (see [17] for background).

A Gödel algebra is an idempotent MTL-algebra, that is
x ∗ x = x holds for all x ∈ A. (Equivalently, a Gödel algebra
is a prelinear Heyting algebra). As in each Gödel algebra
A = (A, ∗,→,∨,∧, 0, 1) it holds that ∗ = ∧, we display A as
(A,∨,∧,→, 0, 1).

Gödel algebras form a variety, denoted G. The variety G
can be considered a category, with objects the algebras in the
variety, and with arrows the homomorphisms between them.

In this paper we shall focus on the full subcategory Gfin of
G, whose objects are the Gödel algebras of finite cardinality.

The following general notions and results on MTL-
algebras, and on prelinear semihoops are well-established. We
recall them here since we shall use them in the paper.

Let A be an MTL-algebra or a prelinear semihoop. Then
p ⊆ A is a filter of A if it is an upward closed, ∗-closed subset
of A, that is for all y ∈ A, if there is x ∈ p with x ≤ y then
y ∈ p, and x ∗ y ∈ p for all x, y ∈ p.

Notice that if A is a Gödel algebra, then each filter p is
just an upward closed subset of A, that is p = {y ∈ A | ∃x ∈
p: x ≤ y}.

Filters of A are in bijection with congruences over A, via
the following definitions: xθpy iff (x → y) ∧ (y → x) ∈ p,
and pθ = {x ∈ A | xθ1}.

In the following, we shall write A/p to denote the quotient
algebra A/θp.

A filter p of A is prime if it is proper, that is p 6= A, and
for all x, y ∈ A, either x→ y ∈ p or y → x ∈ p.

The set of all prime filters ofA, partially ordered by reverse
inclusion, is called the prime spectrum of A, and it is denoted
Spec(A). The inclusion-maximal elements of Spec(A) are the

maximal filters of A, and they form its maximal spectrum
Max(A) ⊆ Spec(A).

Recall that an algebra is simple if its lattice of congruences
contains only the total relation and the diagonal one. If p ∈
Max(A), then A/p is simple.

The following theorem collects some well-known results
about decompositions of MTL-algebras and prelinear semi-
hoops. See, e.g. [14], [15].

Theorem 2.1: Let A be a prelinear semihoop. Then:

1) For each p ∈ Spec(A), the quotient A/p is a chain,
that is, its lattice reduct is a totally ordered set.

2) The subdirectly irreducible MTL-algebras are chains.
3) A is isomorphic with a subdirect product of the

family {A/p | p ∈ Spec(A)}.
4) If A has finite cardinality, then A ∼=∏

p∈Max(A)A/Up, where Up is the intersection
of all prime filters contained in p.

Notice that Max(A) = Spec(A) iff A is semisimple, that
is, A is a subdirect product of simple algebras.

Theorem 2.1 applies evidently to all extensions of
MTL-algebras and of prelinear semihoops. For exten-
sions/expansions of MTL-algebras, one needs to adapt the
definition of filter to the new operations, in order to maintain
the bijection filters-congruences.

In each finite Gödel algebra, each filter is principal, that
is, it is the set of all elements ≥ than some fixed element. In
particular every prime filter p is of the form {y ∈ A | y ≥ xp}
for some join irreducible element xp. We recall that x ∈ A is
join irreducible if x = y ∨ z implies x = y or x = z.

B. Finite forests

Given a subposet Q of a poset P , we call downset of Q the
downward closed poset ↓ Q = {y ≤ x | x ∈ Q}. Analogously,
we call upset of Q the upward closed poset ↑ Q = {y ≥ x |
x ∈ Q}.

A forest is a poset F such that, for each x ∈ F , the downset
↓{x} is totally ordered by restriction of the order of F .

A forest is finite if its underlying set is of finite cardinality.

A map f :F → G between two finite forests is order-
preserving if x ≤ y implies f(x) ≤ f(y) for each x, y ∈ F ; f
is open if it carries downsets to downsets, or, equivalently for
each x ∈ F and y ≤ f(x) there is z ∈ F , with z ≤ x such
that f(z) = y.

The category FF of finite forests has finite forests as
objects, and order-preserving open maps between them as
morphisms.

Let 1 denote the singleton forest {∗}, and 0 the empty
forest ∅.

Lemma 2.2: 1 and 0 are respectively the terminal and the
initial objects in FF.

Proof: Clearly, for each F ∈ FF there are a unique map
F → 1, and a unique map 0→ F .

Lemma 2.3: The coproduct F +G of two finite forests F
and G in FF is given by the the disjoint union of F with G
(in the sense that the partial order relation of F + G is the
disjoint union of the partial order relations of F and G).

Proof: Write the disjoint union of the underlying sets of
F and G as F + G = {(x, 0) | x ∈ F} ∪ {(x, 1) | x ∈ G}.
Then the inclusion maps ιF :F → F +G and ιG:G→ F +G
are given by ιF (x) = (x, 0) and ιG(x) = (x, 1), which are
clearly order-preserving and open. Take now any H ∈ FF,
and let f :F → H and g:G→ H be two arrows in FF. Define
f + g:F +G→ H as the map (f + g)(x, 0) = f(x) if x ∈ F ,
while (f + g)(x, 1) = g(x) if x ∈ G. It is straightforward to
check that f + g is the unique map h:F +G→ H in FF such
that h ◦ ιF = f and h ◦ ιG = g.

For each forest F ∈ FF, let F⊥ be the poset obtained by
adding a fresh bottom element to F , that is, once we fix an
element ⊥ 6∈ F , then F⊥ = F ∪ {⊥}, with ⊥ ≤ x for all
x ∈ F .

A tree is a forest with minimum, which is called the root
of the tree. The following lemma is straightforward.

Lemma 2.4: For each forest F ∈ FF, the poset F⊥ is a
tree in FF. Moreover, each tree in FF has the form F⊥ for
some F ∈ FF.

C. Categorical equivalence

As is well known, the category Gfin of finite Gödel
algebras is dually equivalent to the category FF of finite forests.
This result was left implicit in the works by Horn [18], [19]
(see also [1]), and made recently explicit in, for instance, [12]
(see also [10, Chap. IX]). It can also be obtained specialising
Esakia duality [13] between Heyting algebras and Esakia
spaces to the case of finite and prelinear Heyting algebras.

The functors implementing the equivalence are:

Spec :Gfin → FF ,

defined on objects as SpecA = Spec(A), and on arrows by
taking preimages, that is, if h:A → B then Spech: SpecB →
A is given by (Spech)(p) = h−1[p] for each p ∈ Spec(B).
(Notice that SpecA is indeed a forest, as a consequence of A
being prelinear.) And

Sub :FF→ Gfin ,

defined on objects as

SubF = ({G ⊆ F | G =↓ G},∪,∩,→, ∅, F) ,

where, for all downward closed G,H ⊆ F :

G→ H = F\ ↑ (G \H) ,

and on arrows by taking preimages, that is, if f :F → G, then
Sub f : SubG → SubF is given by (Sub f)(H) = f−1[H]
for each downward closed H ⊆ G.

III. USING THE DUAL EQUIVALENCE TO COMPUTE
COPRODUCTS OF GÖDEL ALGEBRAS

In order to speak of computing the coproduct of two finite
given algebras A and B, we shall agree on how these algebras
are effectively given in input. There may be several distinct
points of views on this matter. For instance, we may be
given the (finite) presentations of these two algebras. Then,
as specified in the introduction, we can readily obtain the
presentation of the coproduct algebra as the disjoint union
of the two given presentations. Notice that this does not
solve automatically the problem of determining the concrete
algebraic structure of the coproduct algebra. For instance,
consider again the case A and B being free algebras in their
variety. Then they are both presented by the empty set of
identities over distinct sets of generators. Then A+B is readily
presented by the empty set of identities over the disjoint union
of the two sets of generators, but this fact alone in general does
not cast enough light on the structure of A + B: it may hard
or impossible to compute, just to cite a major parameter, its
cardinality.

The problem becomes generally harder and more interest-
ing if the input algebras A and B are not specified through
their presentations. Dealing in this paper only with finite
algebras, we may suppose that generally we are given A and
B extensively, that is, we are explicitly given the tables of all
the operations of A and B.

With this general assumption in place, we point out that all
the information we shall extract from A and B, which for all
the kind of algebras considered in this paper amounts to the
identification of the join irreducible elements of A and B, can
be effectively obtained algorithmically from A and B, albeit
not so efficiently.

We finally observe that another very advantageous way to
specify concretely A and B, is to provide directly their dual
objects (the posets SpecA and SpecB, in the case of finite
Gödel algebras), since these objects, as the content of the paper
and its examples should show, are in general combinatorially
much less complex than the original algebras themselves.

Summing up, we assume from now on that the dual objects
of any algebra involved in the computation of a coproduct
are available to us, either as the original input, or as the
output of some pre-processing. We then reduce the problem
of computing the coproducts of algebras A and B to the
computation of the product of the duals of A and B in the
dually equivalent category.

Before moving to the next section, we remark here that
knowledge of a dual category to a variety of algebras provides
us with a very powerful tool to study several features of these
algebras (and related structures) beyond computing coproducts
and their cardinalities. For the case of Gödel algebras, the dual
approach has provided, just to mention a few, results about the
structure and cardinality of free algebras ([12], [6]) (as a matter
of fact, computation of free algebras are particular cases of
computation of coproducts, since the k-generated free algebra
in a variety is the kth copower of the 1-generated one); the
computation of fibred coproducts and amalgamation [12]; the
determination of categorical equivalences between G and other
varieties of algebras [5]; the classification of subvarieties of
G and related structures [5]; the computation of the structure

and cardinality of the automorphisms groups of finite Gödel
algebras [8]; the computation of minimal axiomatisations of
theories in Gödel-Dummett propositional logic [4], the com-
putation of the structure of the free distributive lattices over a
finite Gödel algebra [7].

IV. RECURSIVE COMPUTATION OF PRODUCTS OF FINITE
FORESTS

Lemma 4.1: For all F ∈ FF,

F × 1 ∼= F .

Proof: By Lemma 2.2, 1 is the terminal object in FF.

Lemma 4.2: For all F,G,H ∈ FF,

F × (G+H) ∼= (F ×G) + (F ×H) .

Proof: We will prove that (F × G) + (F × H) is the
product object in FF of F with G + H . We shall then show
that there are morphisms πF : (F × G) + (F ×H) → F and
πG+H : (F×G)+(F×H)→ G+H such that for each K ∈ FF,
and every pair of morphisms fF :K → F , fG+H :K → G+H ,
there is a unique morphism f :K → (F ×G) + (F ×H) such
that πF ◦ f = fF and πG+H ◦ f = fG+H .

To this purpose, let us first consider fG+H , and let KG =
{k ∈ K | fG+H(k) ∈ G}, and KH = {k ∈ K | fG+H(k) ∈
H} (here, not to add notational burden, we have identified G
and H with their isomorphic images in the coproduct G+H).
Since the coproduct in FF is just the disjoint union, we have
that K = KG +KH , that is there are maps ιG:KG → K and
ιH :KH → K such that, for each map gG:KG → K ′, and
gH :KH → K ′, there is a unique map g:K → K ′ such that
g ◦ ιG = gG and g ◦ ιH = gH .

Moreover, there is a unique map fF×G:KG → F×G such
that (fF � KG) = π′F ◦fF×G and (fG+H � KG) = π′G◦fF×G,
for π′F :F ×G→ F and π′G:F ×G→ G being the projection
maps. Analogously, there is a unique map fF×H :KH → F ×
H such that (fF � KH) = π′′F ◦ fF×H and (fG+H � KH) =
π′′H ◦ fF×H , for π′′F :F ×H → F and π′′H :F ×H → H being
the projection maps.

Using again the fact that coproduct is disjoint union, we
then infer that there is a unique map g:K ∼= KG + KH →
(F×G)+(F×H) such that g◦ιG = fF×G and g◦ιH = fF×H .

Let us now define the maps πF : (F ×G) + (F ×H)→ F
by πF = π′F + π′′F and πG+H : (F ×G) + (F ×H)→ G+H
by πG+H = (ι′G ◦ π′G) + (ι′H ◦ π′′H), for ι′G:G→ G+H and
ι′H :H → G + H being the injection maps of the coproduct
G+H . We are left to show that πF ◦g = fF and πG+H ◦g =
fG+H .

Now, let us pick k ∈ K. First suppose k ∈ KG. Then
fF (k) = (fF � KG)(k) = (π′F ◦fF×G)(k) = (π′F ◦g ◦ ιG)(k).
By definition of g, (g ◦ ιG)(k) = g(k) ∈ F ×G. Noticing that
πF coincides by definition with π′F over F ×G, we conclude
(π′F ◦g◦ ιG)(k) = (πF ◦g)(k), that is fF (k) = (πF ◦g)(k). In
a completely analogous manner, one can show that k ∈ KH

implies fF (k) = (π′′F ◦ g ◦ ιH)(k) = (πF ◦ g)(k). Whence,
πF ◦ g = fF .

Finally, we show that πG+H ◦ g = fG+H . Pick k ∈ KG.
Then fG+H(k) = (fG+H � KG)(k) = (π′G ◦ fF×G)(k) =
(π′G ◦ g ◦ ιG)(k). As before, (g ◦ ιG)(k) = g(k) ∈ F ×G. But
by definition πG+H coincides with π′G over F × G, whence
fG+H(k) = (π′G ◦ g ◦ ιG)(k) = (πG+H ◦ g)(k). The case
k ∈ KH is identical, mutatis mutandis.

The following lemma states the recursive formula to com-
pute products of forests.

Lemma 4.3:

F⊥ ×G⊥ ∼= ((F⊥ ×G) + (F ×G) + (F ×G⊥))⊥

for all F,G ∈ FF.

Proof: Let us display F⊥ isomorphically as (F1 + F2 +
· · · + Fu)⊥ for a uniquely determined family {Fi}ui=1 of
trees. Analogously G⊥ ∼= (G1 + G2 + · · · + Gv)⊥, for a
uniquely determined family {Gj}vj=1 of trees. By Lemma 4.2,
we can rewrite the forest (F × G⊥) + (F × G) + (F⊥ × G)
isomorphically as the following coproducts of trees computed
in FF:

u∑
i=1

(Fi ×G⊥) +

u∑
i=1

v∑
j=1

(Fi ×Gj) +

v∑
j=1

(F⊥ ×Gj) .

We denote r0 and s0 the roots of F⊥ and G⊥, respectively.
Further, we denote t0 the root of the tree ((F ×G⊥) + (F ×
G) + (F⊥ ×G))⊥.

We next define the maps πF⊥ : ((F×G⊥)+(F×G)+(F⊥×
G))⊥ → F⊥ and πG⊥ : ((F ×G⊥)+(F ×G)+(F⊥×G))⊥ →
G⊥ as follows. First we set πF⊥(t0) = r0 and πG⊥(t0) = s0.
Now, each x ∈ (F ×G⊥)+(F ×G)+(F⊥×G), must belong
to a unique tree either of the form Fi × G⊥ or Fi × Gj or
F⊥ ×Gj .

Writing F0 and G0 for F⊥ and G⊥, respectively, then x ∈
Fi ×Gj , for a uniquely determined pair (i, j) with i+ j > 0.
We define πF⊥(x) = ιFi(πFi(x)), where πFi :Fi×Gj → Fi is
the projection function, while ιFi :Fi → F⊥ is the set-theoretic
inclusion of the support of Fi into F⊥. Similarly, we define
πG⊥(x) = ιGj (πGj (x)). It is clear that both πF⊥ and πG⊥ are
well-defined morphisms of finite forests.

Now, let us take a forest H and two morphisms f :H → F⊥
and g:H → G⊥. We shall construct a map (f, g):H → ((F ×
G⊥) + (F × G) + (F⊥ × G))⊥ such that πF⊥ ◦ (f, g) = f
and πG⊥ ◦ (f, g) = g. To accomplish this task we partition
the set H as follows. Let R0 = f−1(r0) and R1 = H \ R0.
Analogously, let S0 = g−1(s0) and S1 = H \ S0. Then the
following is a partition of the set H:

{R0 ∩ S0, R0 ∩ S1, R1 ∩ S0, R1 ∩ S1} .

We refine this partition by further subdividing R1 ∩ S1, as
follows. Let R2 be the set of all x ∈ R1 ∩ S1 such that there
is y < x in H with f(y) = r0 and g(y) 6= s0. Notice that,
since g is an order-preserving open map, if Gj is the unique
tree in {Gh}vh=1 such that g(x) ∈ Gj , then also g(y) ∈ Gj .
Similarly, let S2 be the set of all x ∈ R1 ∩ S1 such that there
is y < x in H with f(y) 6= r0 and g(y) = s0. Finally let
T2 = (R1 ∩ S1) \ (R2 ∪ S2). Then

{R0 ∩ S0, R0 ∩ S1, R1 ∩ S0, R2, S2, T2}

is a partition of the set H . For each x ∈ R0 ∩ S0 we let
(f, g)(x) = t0; for each x ∈ R0 ∩ S1 we note that there is
a unique tree Gj such that g(x) ∈ Gj : we then let (f, g)(x)
be the uniquely determined element t of F⊥ × Gj such that
πF⊥(t) = f(x) = r0 and πGj (t) = g(x), where these two
maps are the projections of the product F⊥ × Gj ; for each
x ∈ R1 ∩ S0 we reason analogously, letting (f, g)(x) be the
uniquely determined element t of Fi×G⊥ such that πFi

(t) =
f(x) and πG⊥(t) = g(x) = s0.

Some additional care is needed to deal with the remaining
cases. For each x ∈ R2 we note that there are uniquely
determined trees Fi and Gj such that f(x) ∈ Fi and
g(x) ∈ Gj . Since x ∈ R2, there is y < x in H such
that f(x) = r0 and g(x) 6= s0. As morphisms of finite
forests must carry downsets to downsets, (f, g)(x) must belong
to F⊥ × Gj , but now, reasoning as in the preceding cases
we let (f, g)(x) be the uniquely determined element t of
F⊥ × Gj such that πF⊥(t) = f(x) and πGj

(t) = g(x).
For each x ∈ S2 we reason analogously, letting (f, g)(x)
be the uniquely determined element t of Fi × G⊥ such that
πFi

(t) = f(x) and πG⊥(t) = g(x).

Finally, the last case x ∈ T2 is again similarly dealt with,
as we let (f, g)(x) be the uniquely determined element t of
Fi×Gj such that πFi

(t) = f(x) and πGj
(t) = g(x). A simple

check now shows πF⊥ ◦ (f, g) = f and πG⊥ ◦ (f, g) = g as
desired.

There remains to show that (f, g) is the only map with this
property. Let h:H → ((F × G⊥) + (F × G) + (F⊥ × G))⊥
be a morphism in FF such that πF⊥ ◦h = f and πG⊥ ◦h = g.
Clearly h must coincide with (f, g) over R0 ∩S0. Notice that
if x ∈ R0 ∩ S1 then f(x) = r0 and g(x) 6= s0, whence h(x)
must belong to F⊥ × Gj for a uniquely determined Gj . But
then h(x) = (f, g)(x) as otherwise F⊥×Gj , together with its
projections, would not be the product in F of F⊥ and Gj .

A completely analogous argument shows that h must
coincide with (f, g) over R1 ∩ S0. If x ∈ R1 ∩ S1 then there
are uniquely determined Fi and Gj , i 6= 0 6= j, such that
πFi(h(x)) = f(x) and πGj (h(x)) = g(x), where projections
are those of the product Fi × Gj . If x ∈ R2 ⊆ R1 ∩ S1

then there is y < x in H such that πF⊥(h(y)) = r0

while πG⊥(h(y)) 6= s0, that is y ∈ R0 ∩ S1, and hence
h(y) ∈ F⊥ × Gj . Since h is order-preserving and open, x
must belong to the isomorphic copy of Fi included as a set in
F⊥, but then h(x) = (f, g)(x) as otherwise F⊥×Gj , together
with its projections, would not be the product in F of F⊥ and
Gj . Similar arguments hold for x ∈ S2 or x ∈ T2. Hence
h = (f, g) and the proof is complete.

Notice that the proof of Lemma 4.3 is taken from [10,
Chap. IX], while Lemma 4.2 is never proved explicitly. This
is the first location where all the proofs needed to implement
the following algorithm are fully detailed.

Theorem 4.4: The following recursive algorithm computes
the product of two forests F,G ∈ FF.

1) Apply repeatedly Lemma 4.2 to reduce the com-
putation of F × G to the computation of (F1 ×
G1) + (F2 × G2) + · · · + (Fu × Gu), where
F1, F2, . . . , Fu, G1, G2, . . . , Gu are all trees.

2) For i ∈ {1, 2, . . . , u}, if (either Fi ∼= 1 or Gi ∼= 1)
then apply Lemma 4.1, if not, then apply Lemma 4.3
to rewrite recursively Fi ×Gi.

Proof: The correctness and termination of the algorithm
are immediate by Lemma 4.1, Lemma 4.2 and Lemma 4.3.

Example 4.5: Let us compute the product of 1 + 1⊥ with
1⊥. By Lemma 4.2 we have that

(1 + 1⊥)× 1⊥ ∼= (1× 1⊥) + (1⊥ × 1⊥) .

Now, by Lemma 4.1, 1 × 1⊥ ∼= 1⊥, while, applying Lemma
4.3, we get

1⊥ × 1⊥ ∼= ((1⊥ × 1) + (1× 1) + (1× 1⊥))⊥ .

Proceeding recursively, we get

(1⊥ × 1) + (1× 1) + (1× 1⊥) ∼= 1⊥ + 1 + 1⊥ ,

so that, the desired product turns out to be

(1 + 1⊥)× 1⊥ ∼= 1⊥ + (1⊥ + 1 + 1⊥)⊥ .

Notice that 1 + 1⊥ is the spectrum of the free 1-generated
Gödel algebra, so it can be presented as ({x}, ∅), meaning that
it is generated by a single element x, without imposing any
identity. On the other hand 1⊥ is the spectrum of a 1-generated
Gödel algebra that can be presented as ({y}, y → 0 = 0).
Whence, the coproduct Sub (1⊥ + (1⊥ + 1 + 1⊥)⊥) is the
algebra presented as ({x, y}, y → 0 = 0).

V. CARDINALITY

Lemma 5.1: Each finite forest can be built from finitely
many copies of the terminal object 1, just using the operations
of (binary) coproduct (F,G) 7→ F+G and of lifting F 7→ F⊥.

Proof: By induction on the cardinality |F | of the under-
lying set of a forest F ∈ FF. If |F | ≤ 1, then either F ∼= 0
or F ∼= 1, and then F is built using 0 or 1 copies of the
terminal object. If |F | > 1 then, by finiteness, it has the form
F ∼= G⊥ + H for G ∈ FF being such G⊥ is a subposet
of F , and the possibly empty forest H ∈ FF being uniquely
determined by the pair (F,G). By inductive hypothesis, G
and H are built from copies of the terminal object using only
(binary) coproducts and liftings.

For any finite forest F ∈ FF, let us write ||F || for the
cardinality of the algebra SubF .

Theorem 5.2: The following recursive algorithm computes
the cardinality of any finite Gödel algebra A, having in input
its prime spectrum F ∈ FF.

1) If F ∼= 0 then ||F || = 1.
2) If F ∼= 1 then ||F || = 2.
3) If F ∼= G⊥ +H then ||F || = (||G||+ 1)||H||.

Proof: The correctness and termination of the algorithm
follows immediately by Lemma 5.1.

Example 5.3: Consider the two forests of Example 4.5.
Then ||1⊥|| = 2 + 1 = 3 and ||1 + 1⊥|| = 2 · (2 + 1) = 6.
Their coproduct has cardinality ||1⊥ + (1⊥ + 1 + 1⊥)⊥|| =
3 · (||1⊥ + 1 + 1⊥||+ 1) = 3 · ((3 · 2 · 3) + 1) = 57.

VI. GÖDEL HOOPS AND TREES

Gödel hoops are exactly the 0-free subreducts of Gödel
algebras, that is they are systems A = (A,∧,∨,→, 1) such
that A is a topped, distributive, integral, residuated, prelinear
lattice (A, ∗,∧,∨,→, 1) that is idemponent, i.e. x ∗ x = x,
whence ∗ = ∧. Notice that Gödel hoops may lack a least ele-
ment. Moreover, Gödel hoops are clearly prelinear semihoops,
whence Theorem 2.1 applies.

Given any Gödel hoop A = (A,∨,∧,→, 1) and an element
⊥ 6∈ A, the structure A⊥ = (A ∪ {⊥},∨⊥,∧⊥,→⊥,⊥, 1),
where the restrictions of ∨⊥,∧⊥,→⊥ to A coincide respec-
tively with ∨,∧,→, while ⊥ ∨⊥ x = x, ⊥ ∧⊥ x = ⊥,
⊥ →⊥ x = 1, x →⊥ ⊥ = ⊥, is a directly indecomposable
Gödel algebra, called the lift of A.

A. Finite trees

The category FT of finite trees is the full subcategory of
FF whose objects are trees, that is, forests with a minimum
element, called root. Equivalently, by Lemma 2.4, every object
in FT is a finite forest of the form F⊥.

Lemma 6.1: The following hold in FT.

1) The initial and terminal object in FT is the singleton
forest 1.

2) The product F⊥×G⊥ of two trees in FT is computed
as in FF.

3) The coproduct F⊥ + G⊥ of two trees in FT is the
forest (F + G)⊥, where the coproduct F + G is
computed in FF.

Proof: 1) Clearly, for each F⊥ ∈ FT there is a unique
map F⊥ → 1 and a unique map 1→ F⊥.

2) Use the proof of Lemma 4.3, and notice that everything
carries through from FF to FT.

3) Let r, s, t denote the roots of F⊥, G⊥ and (F + G)⊥,
respectively. Define the maps ιF :F⊥ → (F + G)⊥ and
ιG:G⊥ → (F+G)⊥ as ιF (r) = ιG(s) = t, and ιF (x) = (x, 0)
for all r 6= x ∈ F , and ιG(x) = (x, 1) for all s 6= x ∈ G. The
claim now follows easily from Lemma 2.3, upon noticing that
an order-preserving open maps between trees must map root
to root.

B. Categorical equivalence

The dual equivalence between the category GHfin of finite
Gödel hoops and their homomorphisms, and the category FT
of finite trees and order-preserving open maps, is sketched in
[10, Chap. IX] and fully proved in [5].

The functors implementing the equivalence are

Spec∗:GHfin → FT ,

and
Sub∗:FT→ GHfin ,

that are defined on objects as

Spec∗A = SpecA⊥ , Sub∗ F = SubF \ {∅} ,

while on arrows, they are defined as before by taking preim-
ages.

C. Computing coproducts

It is immediate to check that one can use the algorithm of
Theorem 4.4 to compute coproducts of finite Gödel hoops.

Example 6.2: The product of the tree 1⊥ with itself is
given by the tree (1⊥ + 1 + 1⊥)⊥.

To compute the cardinality of such a coproduct we provide
a slight adaptation of Theorem 5.2. Let ||F ||∗ = |Sub∗ F |.

Theorem 6.3: The following recursive algorithm computes
the cardinality of any finite Gödel hoop A, having in input
F⊥ = Spec∗A.

1) If F⊥ ∼= 1 then ||F⊥||∗ = 1.
2) If F⊥ ∼= (G+H)⊥ then ||F ||∗ = ||G|| · ||H||.

Proof: The correctness and termination of the algorithm
follows immediately by 5.2, upon recalling that |Sub∗ F⊥| =
|SubF | − 1.

Example 6.4: The cardinality of Sub∗ 1⊥ ∼= Sub∗ (1+0)⊥
is 2 ·1 = 2. The cardinality of Sub∗ (1⊥×1⊥) is 3 ·2 ·3 = 18.

VII. GÖDEL∆-ALGEBRAS AND MULTISETS OF CHAINS

A Gödel∆-algebra is a system A = (A,∨,∧,→,∆, 0, 1),
where (A,∨,∧,→, 0, 1) is a Gödel algebra, called the Gödel
reduct of A, while ∆:A → A is the projection operator,
satisfying the following properties.

∆ϕ ∨ ¬∆ϕ = 1, ∆ϕ→ ϕ = 1, ∆ϕ = ∆∆ϕ ,

∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ) = 1, ∆(ϕ∨ψ) = (∆ϕ∨∆ψ) .

Notice that on each totally ordered Gödel∆-algebra the pro-
jection operator is such that ∆x = 1 if x = 1, ∆x = 0 if
x 6= 1.

A filter of a Gödel∆-algebra A is an upward closed subset
p of A such that x ∈ p implies ∆x ∈ p. With this notion in
place, filters are in bijection with congruences via the same
correspondence holding for MTL-algebras, and Theorem 2.1
applies.

The following lemma is well-known. See for instance [2,
Prop. 3].

Lemma 7.1: The variety G∆ of Gödel∆-algebras is
semisimple.

Proof: Let A be a Gödel∆-chain, and let x < y be two
distinct elements in A. Notice that y → x < 1. Assume a
congruence θ is such that xθy. Then (y → x)θ1, whence
∆(y → x)θ∆1, that is 0θ1, which, by convexity of lattice
congruences, means that θ is the total congruence: that is, A
is simple.

Lemma 7.1 and Theorem 2.1 imply the following.

Lemma 7.2: Each finite Gödel∆-algebra A is a direct
product of chains. Actually, A ∼=

∏
p∈Max(A)A/p, and

Max(A) = Spec(A).

Lemma 7.2 tells us that the spectrum of a Gödel∆ algebra
does not contain sufficient info to provide a dual equivalence:
for instance, consider two Gödel∆ chains of different cardinal-
ity: they are clearly not isomorphic, but their spectra coincide,
being the singleton 1 in both cases.

Let A− be the Gödel reduct of a Gödel∆-algebra A. Then
we define

Spec∆A := SpecA− .

Notice that Spec∆A does not coincide in general with the
spectrum SpecA = Max(A) of A. The reader may check
that this coincidence happens iff A− is a Boolean algebra. We
write (G∆)fin for the full subcategory of G∆ whose objects
have finite cardinality.

Lemma 7.3: For each A ∈ (G∆)fin, the poset Spec∆A is
a forest of chains, that is, it has the form Spec∆A ∼=

∑
i∈I Ci,

where each tree Ci is a chain.

Proof: By Lemma 7.2 it is sufficient to notice that for
each finite Gödel∆-chain C we have that Spec C− is a chain.
But this is obvious, as C− itself is by assumption a chain.

Lemma 7.4: Let C,D be Gödel∆ chains, and let h: C → D
be a homomorphism. Then h is injective.

Proof: By way of contradiction, assume h(x) = h(y) for
some distinct elements x, y ∈ C, with x > y. Then h(∆(x→
y)) = h(∆y) = h(0) = 0, while ∆(h(x)→ h(y)) = ∆1 = 1.
Whence, 0 = 1, which is impossible as 0 ≤ y < x ≤ 1. Then
h must be injective.

Let h:A →
∏
i∈I C be a homomorphism of Gödel-

algebras, where each Ci is a Gödel chain. Then h is called
chain-injective if, given each projection πj :

∏
i∈I Ci → Cj , the

homomorphism πj ◦ h:A → Cj is injective.

By Lemma 7.4 each homomorphism h of Gödel∆-algebras
is a chain-injective homomorphism between their Gödel
reducts. We are ready to prove the following.

Theorem 7.5: The category (G∆)fin of finite Gödel∆-
algebras and their homomorphisms is equivalent with the
non-full subcategory Gc.i.fin of Gfin whose objects are direct
products of finite Gödel chains, and whose arrows are the
chain-injective homomorphisms.

Proof: The functor R: (G∆)fin → Gc.i.fin defined on ob-
jects by R(A) = A− and on arrows by the identity R(h) = h
is easily seen to be 1) essentially surjective: let A ∼=

∏k
i=1 Ci

be any direct product of finite Gödel chains. Take its expansion
A∆ defined by adding to A the operation ∆:A→ A defined
by ∆(c1, . . . , ck) = (b1, . . . , bk), for bi = 1 iff ci = 1 and
bi = 0 otherwise. Then R(A∆) = (A∆)− ∼= A. 2) full and
faithful: this follows promptly by R being the identity over
morphisms, and by definition of morphism in Gc.i.fin. Whence
R is an equivalence of categories.

A. Categorical equivalence

Let MC be the category whose objects are finite multisets
of (nonempty) finite chains, and whose morphisms h:C → D,
are defined as follows. Display C as {C1, . . . , Cm} and D as
{D1, . . . , Dn}. Then h = {hi}mi=1, where each hi is an order
preserving surjection hi:Ci � Dj for some j = 1, 2, . . . , n.

By Theorem 7.5, the category (G∆)fin is equivalent with
the subcategory Gc.i.fin of Gfin. Then the following lemma is
an immediate consequence.

Lemma 7.6: (G∆)fin is dually equivalent with the non-
full subcategory category FFc of FF, whose objects are fi-
nite forests of chains F =

∑k
i=1 Ci, and whose arrows

f :
∑k
i=1 Ci →

∑h
j=1Dj are chain-surjective, that is, the

restriction of f to each Ci maps surjectively to some chain
Dl for l ∈ {1, . . . , h}.

Proof: It follows promptly by specialising to the subcate-
gory Gc.i.fin the duality between Gfin and FF, and by composing
with the functor R of Theorem 7.5.

It is now easy to turn the dual equivalence of lemma 7.6
into a dual equivalence between (G∆)fin and MC. Notice that
the proof of the following theorem amounts to prove the rather
obvious fact that MC is equivalent to FFc, which, however, are
formally distinct categories.

Theorem 7.7: The categories (G∆)fin and MC are dually
equivalent.

Proof: Let T :FFc → MC be defined on objects as
T (

∑k
i=1 Ci) = {Ci | i = 1, . . . , k}, and on arrows

f :
∑k
i=1 Ci →

∑l
j=1Dj as T (f) being the collection

{fi:Ci → Dl | i = 1, . . . , k}, where fi is the restriction
of f to Ci, and Dl is the image of fi. It is straightforward
to check that T realises an equivalence between the categories
FFc and MC. The rest follows from Lemma 7.6.

Notice that the functor implementing the (G∆)fin → MC
side of the dual equivalence is given by the composition

T ◦ Spec ◦R .

The other side of the equivalence is given by the functor
Sub∆:MC→ (G∆)fin defined on objects by

Sub∆ {Ci | i = 1, . . . , k} =

k∏
i=1

SubCi ,

and on arrows as Sub ◦ T−1.

B. Coproducts of G∆-algebras

For each finite forest F , let maxF be the set of maximal
elements of F . Then with each finite forest F one can associate
the finite multiset of chains C(F) defined as follows:

C(F) = {↓ {x} | x ∈ maxF} .

For each x ∈ maxF and each y ≤ x, we let C(F)x(y) be the
copy of y in ↓ {x} ∈ C(F).

Let C be an object in MC and let C> denote the object
obtained adding to each chain in C a fresh maximum (being
C a multiset of chains, the effect of adding a new maximum to
each chain in C is the same as that of adding a new minimum:
we have chosen this version to differentiate the notation from
the lifting construction transforming a forest F into a tree F⊥).

For each integer k > 0 let k denote the k-element chain.

Lemma 7.8: In MC the following hold.

1) The terminal object is the multiset {1}, and the initial
object is the empty multiset ∅.

2) The coproduct C + D of two multisets C and D is
the disjoint union of C and D.

3) Products distribute over coproducts: C × (D+E) ∼=
(C ×D) + (C × E).

4) The following recursive formula holds:

{i + 1} × {j + 1} ∼=
(({i + 1}× {j}) + ({i}× {j}) + ({i}× {j + 1}))> .

Proof: 1) and 2) are straightforward by the definitions of
terminal object, initial object and coproduct. The proof of 3)
is completely analogous to the proof of Lemma 4.2, mutatis
mutandis, as that proof essentially relies only on the fact that
the coproduct is the disjoint union. The careful reader can
go through that proof and check that everything still works.
To prove 4), first we construct the forest F := {i + 1} ×
{j + 1} ∼= ({i + 1} × {j}) + ({i} × {j}) + ({i} × {j + 1}))⊥
computed in FF according to Lemma 4.3. Then we apply the
map C to F , producing the multiset C(F) = (({i + 1} ×
{j}) + ({i} × {j}) + ({i} × {j + 1}))>. We are left to show
that C(F) is indeed the product {i + 1} × {j + 1} computed
in MC. Take any D = {D1, D2, . . . , Du} ∈ MC and MC-
maps hi:D → {i + 1}, and hj :D → {j + 1}. Consider the
uniquely determined forest D′ ∈ FFc such that T (D′) = D.
We identify elements of D and D′ through the bijection T .
Then there is a unique order-preserving open map g:D′ → F
such that πi ◦ g = hi and πj ◦ g = hj . Notice that, for each
i = 1, . . . , u, the image of g � Di is of the form ↓ {yi} for
some yi ∈ maxF . We define g′ = {gi}ui=1:D → C(F) as
gi(z) = C(F)yi(g(z)) for each z ∈ Di. Observe that each
gi:Di →↓ {yi} is an order-preserving surjection, so g′ is an
MC-map, uniquely determined by g. For each x ∈↓ {y} ∈
C(F) let zx be the uniquely determined element of F such that
C(F)y(zx) = x. Let ρi:C(F) → {i + 1} and ρj :C(F) →
{j + 1} be defined by ρi(x) = πi(zx) and ρj(x) = πj(zx). It
is clear that ρi ◦ g′ = hi and ρj ◦ g′ = hj . Uniqueness of g′ is
granted by uniqueness of g. Then C(F) ∼= {i + 1}×{j + 1}.

It is clear that the four items of Lemma 7.8 are sufficient
to compute all coproducts of finite Gödel∆-algebras.

Example 7.9: Let us compute the product of the multiset
{2,2} with itself. Then {2,2}×{2,2} ∼= 4·({2}×{2}). Now,
{2} × {2} ∼= (({2} × {1}) + ({1} × {1}) + ({1} × {2}))>.
Whence, {2,2} × {2,2} ∼= 4 · {3,2,3}.

Computing the cardinality of a finite Gödel∆-algebra given
its dual multiset is very simple. Since Sub∆ {Ci | i =
1, . . . , k} =

∏k
i=1 SubCi, its cardinality is just

∏k
i=1(|Ci| +

1).

Example 7.10: Let us consider the coproduct of
Sub∆ {2,2} with itself. By Example 7.9 its cardinality
is (4 · 3 · 4)4 = 5308416.

C. DP-algebras

Drastic product algebras (DP-algebras, for short; also
called S3MTL-algebras in [21]), are MTL-algebras satisfying
x ∨ ((x ∗ x) → 0) = 1. The paper [2] studies DP-algebras,
and introduces, adapting a result of [9], a duality for finite
DP-algebras which is based on a non-full subcategory of MC.

Proposition 7.11: Let MC> be the non-full subcategory of
MC whose morphisms h:C → D satisfy the following addi-
tional constraint: for each i = 1, 2, . . . ,m, if the target Dj of

hi is not isomorphic with 1, then h−1
i (maxDj) = {maxCi}.

Then MC> is dually equivalent to the category of finite DP-
algebras and their homomorphisms.

Proposition 7.11 implies that the category of finite DP-
algebras and their homomorphisms is equivalent with a non-
full subcategory of the category of finite Gödel∆-algebras
and their homomorphisms. In the same paper, a recursive
formula for computing the product in MC> is given, which,
as expected, turns out to be a slight variant of the formula of
Lemma 7.8.4). For the sake of completeness of exposition, we
report this formula here.

{i} × {1} ∼= {i} , {i + 1} × {2} ∼= {i + 1} ,
{i + 2} × {j + 2} ∼=

(({i + 2}×{j + 1})+({i + 1}×{j + 1})+({i + 1}×{j + 2}))>

To compute cardinalities of finite DP-algebras, the same con-
siderations made for the case of finite G∆-algebras apply.

REFERENCES

[1] M. Abad, L. Monteiro. On free L-algebras Notas de Lógica Matemática,
35, (1987).

[2] S. Aguzzoli, M. Bianchi, D. Valota. A note on drastic product logic
Proc. IPMU 2014, Communications in Computer Science, 443, 365-374,
(2014).

[3] S. Aguzzoli, S. Bova, V. Marra. Applications of finite duality to locally
finite varieties of BL-algebras. Proc. LFCS 2009, Lecture Notes in
Computer Science, 5407, 1-15, (2009).

[4] S. Aguzzoli, O. M. D’Antona, V. Marra. Computing minimal axiomati-
sations in Gödel propositional logic. J. Log. Comp., 21, 791-812, (2011).

[5] S. Aguzzoli, T. Flaminio, E. Marchioni. Finite forests, their algebras and
logics. In preparation.

[6] S. Aguzzoli, B. Gerla. Normal Forms and Free Algebras for Some
Extensions of MTL. Fuzzy sets Syst., 159, 1131-1152, (2008).

[7] S. Aguzzoli, B. Gerla, V. Marra. Gödel Algebras Free over Finite
Distributive Lattices. Ann. Pure and App. Logic, 155, 183-193, (2008).

[8] S. Aguzzoli, B. Gerla, V. Marra. The Automorphism Group of Finite
Gödel Algebras. Proc. ISMVL 2010, IEEE Computer Society Press, 21-
26, (2010).

[9] S. Bova, D. Valota. Finite RDP-algebras: duality, coproducts and logic.
J. Log. Comp., 22, 417-450, (2012).

[10] P. Cintula, P. Hájek, C. Noguera, Eds. Handbook of Mathematical Fuzzy
Logic - Volume 2. Studies in Logic, 38, College Publications, (2011).

[11] P. Codara, O.M. D’Antona, V. Marra. Propositional Gödel Logic and
Delannoy Paths. Proc. FUZZ IEEE 2007, IEEE Computer Society Press,
(2007).

[12] O. M. D’Antona, V. Marra. Computing coproducts of finitely presented
Gödel algebras. Ann. Pure and App. Logic, 142, 202-211, (2006).

[13] L. L. Esakia. Heyting Algebras I. Duality Theory (Russian). Met-
sniereba, Tbilisi, (1985).

[14] F. Esteva, L. Godo. Monoidal t-norm based logic: Towards a logic for
left-continuous t-norms. Fuzzy sets Syst. 124, 271-288, (2001).

[15] N. Galatos, P. Jipsen, T. Kowalski, H. Ono. Residuated Lattices: An
Algebraic Glimpse at Substructural Logics. Elsevier, (2007).

[16] S. Ghilardi, M. Zawadowski. A sheaf representation and duality for
finitely presented Heyting algebras. J. Symb. Logic, 60, 911-939, (1995).

[17] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998).
[18] A. Horn. Free L-algebras. J. Symb. Logic, 34, 475-480, (1969).
[19] A. Horn. Logic with truth values in a linearly ordered Heyting algebras.

J. Symb. Logic, 34, 395-408, (1969).
[20] S. Jenei, F. Montagna. A proof of standard completeness of Esteva and

Godo’s monoidal logic MTL. Studia Logica, 70 184-192, (2002).
[21] C. Noguera. Algebraic study of axiomatic extensions of triangular norm

based fuzzy logics. Ph.D. thesis, IIIA-CSIC, 2006.

