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Introduction

A partition of a set A is a set of nonempty pairwise disjoint subsets of A whose union is
A. An equivalent definition of a partition can be given using functions. In these terms, a
partition of a set is the set of fibres of a surjective function.

The latter definition allows us to introduce the central topic of this thesis: a notion of
partition for partially ordered sets. Analyzing the category Poset of partially ordered sets, or
posets, and order-preserving maps, we see that two kinds of surjections have to be taken into
account: order-preserving surjections, and the stronger regular surjections. Therefore, we
must deal with two different classes of partitions, namely, monotone and regular partitions of
a poset. These two notions form the basis for a theory of partitions of posets. In analogy with
the set-theoretic case, our first step is to obtain characterizations of monotone and regular
partitions which do not mention order-preserving maps. Throughout, we restrict attention to
the case of finite posets.

Our analysis of the category Poset is presented in Chapter 2. Here, we introduce the
notions of epimorphism and regular epimorphism, the classes of order-preserving surjections
needed to define partitions of posets. The use of precisely these two kinds of maps is justified
by the existence of two dual factorization systems, that we illustrate in the last section of the
chapter.

The third chapter is the core of the thesis. We introduce the definitions of monotone and
regular partitions of a poset, and obtain their characterizations. At the end of the chapter, we
present such partitions of a poset as extensions of some specific partitions of the underlying
set of the poset. Such extensions are obtained by endowing the underlying partitions with
an appropriate order. We introduce a necessary and sufficient condition for a partition to be
extended, and we prove that if our condition is satisfied, the extension of a partition of the
underlying set of a poset P to a regular partition of P is unique.

In Chapter 4, we study the collection of all monotone and regular partitions of a poset.
We endow these classes with a lattice structure, obtaining the monotone and regular parti-
tion lattices of a poset. First, a bijection between monotone and regular partitions and certain
classes of quasiorders is established. This result generalizes the usual correspondence be-
tween partitions and equivalence relations. Then, we describe the monotone and regular
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partition lattices in terms of quasiorders. We obtain a description of the lattice operations
in terms of operations on quasiorders, and also more directly in terms of partitions. Finally,
we investigate these lattices and some of their properties. We obtain in particular that the
lattice of regular partitions of a poset P can be embedded both as a join-subsemilattice in
the partition lattice of the underlying set of P, and as a meet-subsemilattice in the monotone
partition lattice of P. We also prove that the regular partition lattice is ranked, while the
monotone partition lattice, in general, is not.

In Chapter 5, we present the well-known Birkhoff duality between Poset and the cate-
gory of bounded distributive lattices and their {0,1}-preserving lattice homomorphisms. We
thus investigate the duals of monotone and regular partitions via this duality. The dual no-
tions to monotone and regular partitions are sublattices and regular sublattices, respectively.
We characterize regular sublattices as sublattices with an additional algebraic property.

Finally, the last chapter is devoted to a first discussion of enumeration problems within
the theory of partitions of finite posets. In particular, we study the monotone and regular par-
tition lattices of chains and antichains, and count the number of their elements. Building on
this, we provide tight bounds for the number of monotone and regular partitions of any poset.
Then, by way of illustration, we provide a formula to compute the number of regular parti-
tions for a specific family of posets. In the last two sections we deal with the enumeration of
order-preserving maps. In particular, the last section is devoted to Möbius inversion. Here,
we present the well-known Möbius inversion theorem, and we give a numerical example of
a Möbius inversion on the lattice of regular partitions of a given poset.



Chapter 1
Basic notions

Pigmaei gigantum humeris impositi plusquam ipsi gigantes
vident.

Isaac Newton

1.1 Partially ordered sets

The principal notion which appear in this thesis is that of partially ordered set. Consider
a set P. A partial order on P is a binary relation 6 on P such that, for all x,y ∈ P,

• x 6 x (reflexivity),

• x 6 y and y 6 x imply x = y (antisymmetry),

• x 6 y and y 6 z imply x 6 z (transitivity).

The fact that x 6 y can also be expressed by (x,y) ∈ 6. A set P equipped with a partial
order 6 is called a partially ordered set, or poset, for short. A poset is usually denoted simply
by specifying the underlying set P, except when it is necessary to specify the order. In this
case, we use the notation (P,6). We sometimes write y > x, instead of x 6 y, with the same
meaning. We write x 
 y to mean that x 6 y does not hold. If x 
 y and y 
 x we write
x ‖ y, and say that x and y are incomparable. We also use the symbol < to denote a strict
inequality, that is x < y if and only if x 6 y and x , y.

A finite poset is a poset whose underlying set is finite.

Let P be a poset. If for all x,y ∈ P, either x 6 y or y 6 x, then P is a chain. Alternative
names for a chain are linearly ordered set and totally ordered set. The poset P is an antichain
if for x,y ∈ P, x 6 y only if x = y.

Another important notion is that of covering relation. Let P be a poset, and let x,y ∈ P.
We say that x is covered by y, or that y covers x, and write x C y, if x < y and there is no
element z ∈ P such that x < z < y. The covering relation is particulary useful when drawing
posets. In fact, we can represent a poset P by a configuration of points (the elements of P)
and interconnecting lines indicating the covering relation. For example, Figure 1.2 depicts
a poset P whose underlying set is {a,b,c,d}, endowed with the partial order 6 such that
a < c, a < d, b < c, b < d, and no other pairs of distinct elements are comparable. Such a
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Figure 1.1: Hasse Diagram.

representation of a poset is called its Hasse diagram. Following tradition, we do not give a
formal definition of Hasse diagram.

Let (P,6) be a poset and Q ⊆ P. The downset of Q, written ↓ Q, is defined by

↓ Q = {x ∈ P | x 6 y, for some y ∈ Q}.

We write ↓ x for ↓ {x}. A partially ordered set (P,6) is a forest if for all x ∈ P the downset ↓ x
is a chain. An element m ∈ P is minimal if x 
m for all x ∈ P, and is the bottom or minimum
of P if m 6 x for all x ∈ P. A tree is a forest with a bottom element, called the root of the
tree. A subforest of a forest P is the downset of some Q ⊆ P.

Figure 1.2: A forest.

In this thesis, and in particular in Chapters 4 and 6, we make use of some specific com-
binatorial properties of posets. Although many of these properties will be introduced when
needed, it is convenient to introduce here the notion of ranked poset.

Definition 1.1. A poset P is said to be ranked if there exists a rank function r : P →
{0,1, . . . ,n} such that r(x) = 0 if x is a minimal element of P, and r(y) = r(x)+ 1 if y cov-
ers x in P.

If P is a ranked poset, the number of elements of P of rank k is denoted Wk and is called
the k-th Whitney number of P of the second kind.

Example 1.1. Figure 1.3 shows the Hasse diagram of a ranked poset. Its Whitney numbers
of the second kind are

W0 = 1 , W1 = 6 , W2 = 7 , W3 = 1 .
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Figure 1.3: A ranked poset.

1.2 Order-preserving maps

The following notions play a fundamental role throughout the thesis, and in particular in
Chapter 2.

Let P and Q be posets. A map f : P→ Q is said to be order-preserving, or monotone, if
for any x,y ∈ P, x 6 y in P implies f (x) 6 f (y) in Q.

A map g : P→ Q is said to be an order-embedding whenever for any x,y ∈ P, x 6 y in
P if and only if g(x) 6 g(y) in Q. When g : P→ Q is an order-embedding we shall write
g : P ↪→ Q.

A map h : P→ Q is said to be an order-isomorphism, if h is an order-embedding, and it
is surjective on the underlying sets. When there exists an order-isomorphism from P to Q,
we say that P and Q are order-isomorphic and write P � Q.

We also use the notions of order-preserving injections (surjections), that is order-preserving
maps which are injective (surjective) on the underlying sets.

Example 1.2. Figure 1.4 shows an order-preserving map. Figure 1.5 shows an order-
embedding which is not an isomorphism. Figure 1.6 shows an order-isomorphism. Finally,
Figure 1.7 shows an order-preserving injection which is not an embedding.

1.3 Notions on lattice theory

Let P be a poset, and let S ⊆ P. An element x ∈ P is an upper bound of S if s 6 x for all
s ∈ S . An element x ∈ P is the least upper bound of S , or supremum of S , written supS , if x
is an upper bound of S , and s 6 y for every s ∈ S implies x 6 y. Similarly, we define a lower
bound of S as an element x ∈ P such that x 6 s for all s ∈ S . An element x ∈ P is the greatest
lower bound of S , or infimum of S , written inf S , if x is a lower bound of S , and y 6 s for
every s ∈ S implies y 6 x.
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Figure 1.4: An order-preserving map.

Figure 1.5: An order-embedding.

Figure 1.6: An order-isomorphism.

Definition 1.2. A poset L is a lattice if either L = ∅, or for every x,y ∈ L both sup{x,y} and
inf{x,y} exist in L.

We write x∨ y in place of sup{x,y}, and x∧ y in place of inf{x,y}. We thus have x 6 y if
and only if x = x∧y. With the use of ∧ (meet) and ∨ (join) we can regard lattices as algebraic
structures.

Definition 1.3. An algebraic structure (L,∧,∨), where ∧ and ∨ are binary operations, is a
lattice if it satisfies the following identities.

(L1) x∨ y = y∨ x , x∧ y = y∧ x. (Commutative laws)

(L2) x∨ (y∨ z) = (x∨ y)∨ z , x∧ (y∧ z) = (x∧ y)∧ z. (Associative laws)
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Figure 1.7: An order-preserving injection.

(L3) x∨ x = x , x∧ x = x. (Idempotent laws)

(L4) x = x∨ (x∧ y) , x = x∧ (x∨ y). (Absorption laws)

It is not difficult to verify that the two definitions of lattice are equivalent, in the sense
that if L is a lattice by one of the two definitions, then it is a lattice by the other.

A lattice L is said to be complete if for every subset S of L, both supS and inf S exist in
L. One can easily verify that every finite lattice is complete.

In this thesis, we are concerned with finite posets and lattices. Thus, from
now on ‘poset’ means ‘finite poset’, and ‘lattice’ means ‘finite lattice’, unless
otherwise stated.

A lattice always has a bottom element, denoted ⊥, or 0, and a top element, denoted >,
or 1. The elements which cover the bottom are called atoms. Sometimes the term coatoms
is also used to indicate the elements of a lattice which are covered by the top.

Example 1.3. Figure 1.8 show the Hasse diagram of a lattice. The element t is the top, b is
the bottom. The atoms are x and y, the coatoms are y and z. The poset in Figure 1.9 is not a
lattice, for the supremum of x and y does not exist.

The most thoroughly studied classes of lattices are distributive and modular lattices. The
former will have a fundamental role in Chapter 5.

Definition 1.4. A distributive lattice is a lattice which satisfies the distributive laws

(D1) x∧ (y∨ z) = (x∧ y)∨ (y∧ z),

(D2) x∨ (y∧ z) = (x∨ y)∧ (y∨ z).

Definition 1.5. A modular lattice is a lattice which satisfies the modular law

(M) x 6 y implies x∨ (y∧ z) = x∧ (y∨ z).
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Figure 1.8: A lattice.

Figure 1.9: A poset which is not a lattice.

It is possible to show that every distributive lattice is modular.
A lattice L is called semimodular if it satisfies the upper covering condition, that is

whenever x and y cover x∧ y in L, then x∨ y covers both x and y. A lattice L is atomic if
each element of L is a join of atoms. A lattice which is atomic and semimodular is called
a geometric lattice. An important family of geometric lattices is that of partition lattices,
which will be introduced in Chapter 4.

Example 1.4. Figure 1.10 shows the Hasse diagram of a geometric lattice. One can check
that the depicted lattice is semimodular and atomic. The lattice in Figure 1.8 is a classical
example of a non-geometric lattice. In fact, both x and y cover x∧y, but x∨y does not cover
x.
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Figure 1.10: A geometric lattice.

1.4 Bibliographic notes

Almost all the basic notions presented in this chapter can be found in [DP02]. However, note
that while [DP02] require a lattice to be nonempty, we admit empty lattices. We also refer to
[Grä98], where many more details on lattices can be found. An introduction to lattices can
also be found in every book on universal algebra. We cite, for example, [BS81]. A different,
more combinatorial, approach to posets and lattices can be found in [Sta97].



Chapter 2
The category Poset

If the point is sharp, and the arrow is swift, it can pierce
through the dust no matter how thick.

Bob Dylan

Note. As specified in the introduction, we always deal with finite objects, although some
results can be easily adapted to the infinite case. Thus, when we talk about posets we always
mean finite posets, and when we talk about concrete categories whose objects are sets with
structure, the underlying sets are always assumed to be finite.

2.1 Basics on categories

In this chapter we give a categorical introduction to the objects of our study: partially
ordered sets. The main goal is to give a strong motivation for the central subject of this

thesis, that is the study of partitions of partially ordered sets. Essentially, studying a category
means studying objects together with morphisms between them. Well-known categories are,
for instance, sets and functions, partially ordered sets and order-preserving maps, groups and
homomorphisms, topological spaces and continuous functions.

We will focus on the category Poset of partially ordered sets and order-preserving maps,
but, as much as possible, we will draw a parallel between Poset and the category Set of
sets and functions, trying to point out similarities and differences.

Formally, a category K is a collection of objects of K together with, for each pair A, B
of objects, a (possibly empty) collection K(A,B) of morphisms from A to B. We may write

f : A→ B or A
f
−→ B to indicate that the morphism f is in K(A,B), and we then refer to A

as the domain of f and to B as the codomain of f . Morphisms are subject to the following
conditions.

(1) For any three objects A, B and C of K , there is given a composition law

K(A,B) × K(B,C)→K(A,C) : (A
f
−→ B,B

g
−→C) 7→ A

g◦ f
−→C

which satisfies the associative axiom that for any objects A, B, C, D ofK and all mor-
phisms f in K(A,B), g in K(B,C), h in K(C,D) we have h◦ (g◦ f ) = (h◦g)◦ f .

(2) For every object A of K , the collection K(A,A) contains a special morphism idA ,
called the identity of A, with the property that for every object B of K , and for all f in
K(A,B) and g in K(B,A) we have f ◦ idA = f and idA ◦g = g.
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We often use commutative diagrams like the one in Figure 2.1 to represent properties of
morphisms in a category, and we say that a diagram commutes if we can exchange paths,
between two given points, with impunity.

Figure 2.1: Commutative diagram.

We have already specified that Poset shall have posets for objects, and that for each
pair of objects A and B, Poset(A,B) shall be the set of order-preserving maps from A to
B. Let f : A → B and g : B→ C be order-preserving maps. Composition is defined as
(g◦ f )(x) = g( f (x)), and identity is defined as idA(x) = x, for all x ∈ A. Then

a 6 a′ in A⇒ f (a) 6 f (a′) in B⇒ g( f (a)) 6 g( f (a′)) in C
so that g ◦ f is order-preserving. Clearly, idA is order-preserving. Since composition and
identities are defined as in Set, we see that Poset is indeed a category.

Some morphisms play a distinguished role in categories, as we will soon see for the
category Set. These fundamental classes of morphism are monomorphisms, epimorphisms
and isomorphisms.

Definition 2.1. A morphism f : A→ B is said to be a monomorphism provided that for all
pairs h,k : C→ A of morphisms such that f ◦h = f ◦ k, it follows that h = k. In other words
f is left-cancellable with respect to composition.

Figure 2.2: Monomorphism.

The concept of category affords an economical and useful duality: each concept is two
concepts, and each result is two results. The categorical dual of monomorphism is epimor-
phism.

Definition 2.2. A morphism f : A→ B is said to be an epimorphism provided that for all
pairs h,k : B→ C of morphisms such that h◦ f = k ◦ f , it follows that h = k. In other words
f is right-cancellable with respect to composition.
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Figure 2.3: Epimorphism.

A function is a monomorphism in Set if and only if it is injective. A function is an epi-
morphism in Set if and only if it is surjective. The next proposition gives a characterization
of monomorphisms and epimorphisms in Poset.

Proposition 2.1. An order-preserving map is a monomorphism in Poset if and only if it is
injective. An order-preserving map is an epimorphism in Poset if and only if it is surjective.

Proof. Let f : A→ B be an order-preserving injection, and consider two order-preserving
maps h,k : C → A such that f (h(c)) = f (k(c)) for every c ∈ C. Since f is injective, this
implies that h(c) = k(c) for every c ∈C.

Take now f : A→ B to be mono,1 and suppose it is not an injection. Let a1,a2 ∈ A be
such that a1 , a2 and f (a1) = f (a2). Consider a poset C with only two elements c1 ‖ c2, an
order-preserving map h : C→ A defined by h(c1) = h(c2) = a1, and an order-preserving map
k : C→ A defined by k(c1) = a1, k(c2) = a2. We have f ◦h = f ◦ k, but h , k.

In a similar way, we can obtain the second statement. �

Definition 2.3. A morphism f : A→ B in a category K is called an isomorphism provided
that there exists a morphism g : B→ A with g◦ f = idA and f ◦g = idB. Such a morphism g
is called an inverse of f .

In the category Set the class of isomorphisms coincides with the class of all bijections
between sets. A characterization of isomorphisms in Poset is given by the following propo-
sition.

Proposition 2.2. In Poset isomorphisms are precisely order-isomorphisms.

Proof. Let f : A→ B be an order-isomorphism, and consider the function f̂ −1 : B→ A de-
fined by f̂ −1(b) = a, with a ∈ A such that f (a) = b (unique because f is bijective), for all
b ∈ B. Since, for each a1,a2 ∈ A, a1 6 a2 if and only if f (a1) 6 f (a2), ˆf −1 can be regarded
as an order-preserving map f −1 : B→ A such that for each b1,b2 ∈ B, b1 6 b2 if and only if
f −1(b1)6 f −1(b2). Moreover, by construction, f −1( f (a))= a, for all a ∈ A, and f ( f −1(b))= b,
for all b ∈ B.

Take now f : A→ B to be iso in the category Poset. Let g : B→ A be the inverse of f .
For h,k : B→C we note that k◦ f = h◦ f implies k◦ f ◦g= h◦ f ◦g. We obtain h= k, and thus
f is epi. We also note, for h′,k′ : C→ A, that f ◦ k′ = f ◦h′ implies g◦ f ◦ k′ = g◦ f ◦h′. We

1We use without distinction “ f is mono” and “ f is a monomorphism”. The same applies to “ f is epi” and “ f is
an epimorphism”.
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obtain h′ = k′, and thus f is mono. Finally, since f and g are order-preserving, for x,y ∈ A,
we have that x 6 y implies f (x) 6 f (y), and that f (x) 6 f (y) implies x = g( f (x)) 6 g( f (y)) = y,
so f is an order-isomorphism. �

The last concept we introduce in this paragraph is that of factorization system.

Definition 2.4. Let E and M be classes of morphisms of a category K . K is a uniquely
(E,M)-factorizable category if and only if

• each morphism f has an (E,M)-factorization f = m◦ e, with m inM and e in E,

• (E,M)-factorizations are essentially unique, i.e., whenever f =m◦e =m′ ◦e′ for some
m,m′ inM, e,e′ in E, there exists an isomorphism h such that the following diagram
commutes.

Figure 2.4: Factorization system.

If E andM are closed under composition and contain all isomorphisms we say that (E,M)
is a factorization system for the category K .

Let epi be the class of all epimorphisms in a given category, and let mono be the class
of all monomorphisms. The well-known fact that each function between sets factorizes as a
surjection followed by an injection can be reformulated as follows:

(epi,mono) is a factorization system for the category Set.

Figure 2.5 shows the factorization f = m ◦ e of a morphism f : A→ B as a composition
of an epimorphism e : A→ f (A) and a monomorphism m : f (A)→ B.

Unfortunately, the category Poset is not uniquely (epi,mono) factorizable, as we show
in the following example. Thus, in order to describe a factorization system for Poset we
need to introduce other classes of morphisms.

Example 2.1. Consider the partially ordered sets P, Q, R, S in Figure 2.6, and consider
the order-preserving map f : P→ Q such that f (a) = z, f (b) = f (c) = x. Let e : P→ R be
the order-preserving map defined by e(a) = v, e(b) = e(c) = u, and let m : R→ Q be such
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Figure 2.5: Factorization in Set.

that m(u) = x, m(v) = z. Then, e is epi in the category Poset, and m is mono, because of
Proposition 2.1. Moreover, f =m◦e. Let now e′ : P→ S be the order-preserving map defined
by e′(a) = v′, e′(b) = e′(c) = u′, and m′ : S → Q be such that m′(u′) = x, m′(v′) = z. Again,
e′ is epi and m′ is mono in Poset, and f = m′ ◦ e′. Since, by Proposition 2.2, there is no
isomorphism between R and S the factorizations f =m◦e and f =m′ ◦e′ are not essentially
unique, and (epi,mono) is not a factorization system for the category Poset.

Figure 2.6: Example 2.1.

2.2 Regular monomorphisms

Originally it was believed that monomorphisms would constitute the correct categorical ab-
straction of the notion of “embeddings of substructures” that exists in various contents.
However, in many instances the concept of monomorphism is too weak. For example, in
Poset monomorphisms are just injective order-preserving maps and need not be order-
embeddings. We thus introduce a stronger notion that more frequently corresponds to em-
beddings in categories.

Definition 2.5. A morphism m : C → A is called a regular monomorphism if and only if
there exists a pair f ,g : A→ B of morphisms such that:

(1) f ◦m = g◦m,

(2) for any morphism m′ : C′ → A with f ◦m′ = g ◦m′, there exists a unique morphism
ψ : C′→C such that m′ = m◦ψ, i.e., such that the triangle in Figure 2.7 commutes.
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Figure 2.7: Regular monomorphism.

In Paragraph 2.1 we have given a characterization of monomorphisms and epimorphisms
in the categories Set and Poset. We recall that:

• a monomorphism in Set is an injection between sets, a monomorphism in Poset is
an order-preserving injection between posets;

• an epimorphism in Set is a surjection between sets, an epimorphism in Poset is an
order-preserving surjection between posets.

It is clear from the uniqueness requirement in Definition 2.5 that regular monomorphisms
must be monomorphisms. Moreover, in the category Set the regular monomorphisms are
precisely the injective functions, i.e., the class of regular monomorphisms coincides with
the class of monomorphisms. In Poset they do not. The following proposition gives a
characterization of regular monomorphisms in the category Poset.

Proposition 2.3. In Poset, regular monomorphisms are precisely order-embeddings.

Proof. (⇒) Let (P,6) and (Q,6Q) be posets, and let m : P→ Q be a regular monomorphism.
By Definition 2.5, there exist f ,g : Q→ R such that f ◦m = g ◦m. Moreover, since m is
mono, by Proposition 2.1, it is an order-preserving injection. Suppose that m is not an
order-embedding. Thus, there exist p1, p2 ∈ P such that m(p1) 6Q m(p2), but p1 and p2 are
incomparable. Consider the poset P′ having the same underlying set as P, endowed with
the order 6′ defined as the transitive closure of the relation obtained by adding to 6 the pair
(p1, p2). This transitive closure does not impair the antisymmetric property. In fact, if we
take a , b ∈ P, with a 6 b, the pair b 6′ a appears in 6′ if and only if b 6 p1 and p2 6 a, but
in this case we would have p2 6 a 6 b 6 p1, against our hypothesis that p1 ‖ p2.

Consider now the function m̂ : P → Q, defined by m̂(p) = m(p), for all p ∈ P. Take
x,y ∈ P such that x 
 y and x 6′ y. Then, the pair (x,y) of the relation 6′ is obtained by the
transitive closure described above, and x 6 p1 6′ p2 6 y. Since m is order-preserving, and by
hypothesis m(p1) 6Q m(p2), we obtain m̂(x) 6Q m̂(p1) 6Q m̂(p2) 6Q m̂(y), and thus m̂ can be
regarded as an order-preserving map m′ : P′→ Q. Observing that m′ is the same as m on the
underlying sets, we immediately obtain f ◦m′ = g◦m′.

By the definition of regular monomorphism we can find a unique morphism ψ : P′→ P
such that the diagram in Figure 2.8 commutes. Suppose m(p1) = m′(p1) = q1 and m(p2) =
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Figure 2.8: Proof of Proposition 2.3.

m′(p2) = q2. We then would have ψ(p1) ∈ m−1(q1) and ψ(q2) ∈ m−1(q1), and so, since m is
injective, ψ(p1) = p1 and ψ(p2) = p2, but such a ψ would not be order-preserving. Since f
and g satisfy f ◦m = g◦m but are otherwise arbitrary, this would contradict the fact that m is
a regular monomorphism. Therefore, m has to be an order-embedding.

(⇐) Let (P,6) and (Q,6Q) be posets, and let m : P→Q be an order-embedding. Consider
the poset R, having underlying set {0,1}, endowed with the order 6R such that 0 ‖ 1. Let
f ,g : Q→ R be order-preserving maps such that f (x) = 1 for all x ∈ Q and g(x) = 1 if and
only if x ∈ m(P). Clearly, f ◦m = g◦m.

Consider now a poset (P′,6′) and an order-preserving map m′ : P′→Q such that f ◦m′ =
g◦m′. It is easy to see that m′(P′) ⊆ m(P). Since m is injective, we can construct a function
ψ̂ : P′ → P by setting ψ(p) = m−1(m′(p)), for all p ∈ P′. Such a function can be regarded
as an order-preserving map ψ : P′→ P, because if x 6′ y, for x,y ∈ P′, then m′(x) 6Q m′(y),
and, since m is an order-embedding, m−1(m′(x)) 6 m−1(m′(y)).

Suppose that there exists a morphism ψ′ : P→ P′, distinct from ψ, such that m◦ψ′ =m′.
Let p be an element of P such that ψ′(p) , ψ(p) =m−1(m′(p)). Then we would have m′(p) =
m(ψ′(p)) , m(ψ(p)) = m′(p), a contradiction. Summing up, for an arbitrary morphism m′ :
P′→ Q such that f ◦m′ = g◦m′, there exists a unique order-preserving map ψ : P′→ P such
that m◦ψ = m′, i.e., m is a regular monomorphism. �

2.3 Regular epimorphisms

The dual notion to regular monomorphism is regular epimorphism.

Definition 2.6. A morphism e : B→ C is called a regular epimorphism if and only if there
exists a pair f ,g : A→ B of morphisms such that:

(1) e◦ f = e◦g,

(2) for any morphism e′ : B→ C′ with e′ ◦ f = e′ ◦ g, there exists a unique morphism
ψ : C→C′ such that e′ = ψ◦ e, i.e., such that the triangle in Figure 2.9 commutes.

Clearly, regular epimorphisms are epimorphisms. In particular, in the category Set ,
the class of regular epimorphisms coincides with the class of epimorphisms, i.e., regular
epimorphisms are precisely surjective functions. In Poset the two classes do not coincide.
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Figure 2.9: Regular epimorphism.

In order to give a characterization of regular epimorphisms in the category Poset, we
need some more definitions. First, we recall that a partition of a set A is a set π of nonempty
pairwise disjoint subsets of A whose union is A. The members of π are called blocks of π.
More details on partitions are given in the following chapters.

Notation. We point out the use of different symbols for representing different types of re-
lations. The symbol 6 denotes the partial order relation between elements of a poset. A
second symbol, C, represents the associated covering relation. Finally, the symbol . denotes
quasiorder relations, sometimes called preorders, i.e reflexive and transitive relations.

Definition 2.7 (Blockwise quasiorder). Let (P,6) be a poset and let π = {B1,B2, . . . ,Bk} be a
partition of the set P. For x,y ∈ P, x is blockwise under y with respect to π, written

x .π y ,

if and only if there exists a sequence

x = x0,y0, x1,y1, . . . , xn,yn = y ∈ P

satisfying the following conditions:

(1) for all i ∈ {0, . . . ,n}, there exists j such that xi,yi ∈ B j ,

(2) for all i ∈ {0, . . . ,n−1}, yi 6 xi+1.

Observe that the relation .π in Definition 2.7 indeed is a quasiorder. In fact, if x 6
y and y 6 z for x,y,z ∈ P, then there exist two sequences x = x0,y0, x1,y1, . . . , xn,yn = y
and y = yn+1,zn+1,yn+2,zn+2, . . . ,yn+m,zn+m = z satisfying (1) and (2), and a sequence x =
x0,y0, x1,y1, . . . , xn,yn = yn+1,zn+1,yn+2,zn+2, . . . ,yn+m,zn+m = z satisfying (1) and (2), too.
Thus, x .π z and the relation .π is transitive. The reflexivity of .π results from the reflexivity
of 6.

Example 2.2. Consider the partially ordered set (P,6) in Figure 2.10(1) and the partition
π1 = {B1,B2} of P depicted in Figure 2.10(2). The incomparable elements d and a of P are
such that d .π1 a. In fact, we can build a chain d,b,c,a satisfying (1) and (2) in Definition
2.7. On the other hand, a is not blockwise under d with respect to π1. In fact, there is no
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chain of elements of P satisfying (1) and (2) in Definition 2.7. Consider now the partition
π2 = {C1,C2} of P shown in Figure 2.10(3). With respect to π2, a is blockwise under b and
also b is blockwise under a, but a , b. This shows that .π2 is not a partial order.

Figure 2.10: Example 2.2.

The definition of blockwise quasiorder allows us to isolate a special kind of order-
preserving map.

Definition 2.8 (Fibre-coherent map). Consider two partially ordered sets (P,6P) and (Q,6).
Let f : P→ Q be a function, and let π f = { f −1(q) |q ∈ f (P)} be the set of fibres2 of f . We say
f is a fibre-coherent map whenever for any p1, p2 ∈ P, f (p1)6 f (p2) if and only if p1 .π f p2.

A fibre-coherent map is order-preserving. Indeed, if p1 6 p2 then, by Definition 2.7,
p1 .π f p2.

Example 2.3. Consider the morphisms f and g shown in Figure 2.11. The map f is not
fibre-coherent because f (d) 6 f (c), but d is not blockwise under c with respect to the set of
fibres π f . Consider now the set of fibres πg. Then d .πg c and the map g is fibre-coherent.

Figure 2.11: Example 2.3.

The following proposition gives the promised characterization of regular epimorphisms
in the category Poset.

2Note that π f is a partition of P.
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Proposition 2.4. In Poset, regular epimorphisms are precisely fibre-coherent surjections.

Proof. (⇒) Let (P,6P) and (Q,6) be posets, let e : P→ Q be a regular epimorphism and
let πe = {e−1(q) |q ∈ Q}. Since e is epi, it is an order-preserving surjection by Proposition
2.1. Moreover, by Definition 2.6, there exists a pair f ,g : R→ P of morphisms such that
e◦ f = e◦g. Suppose that e is not fibre-coherent. If x.πe y for some x,y ∈ P, then there exists
a sequence x = x0,y0, x1,y1, . . . , xn,yn = y ∈ P satisfying conditions (1) and (2) in Definition
2.7. For such a sequence, since e is order-preserving, we have e(x) = e(x0) = e(y0) 6 e(x1) =
e(y1) 6 · · · 6 e(xn) = e(yn) = e(y). Thus, there must exist p1, p2 ∈ P, with e(p1) = q1 and
e(p2) = q2, such that q1 6 q2 but p1  πe p2. Note that p1 and p2 must be incomparable, and
that q1 , q2.

Case (i). Suppose q1 C q2, where C is the covering relation induced by 6. Consider the poset
Q′ having Q as underlying set, endowed with the relation 6′ obtained by removing from 6
the pair (q1,q2). In other words, the only difference between 6′ and 6 is that q1 6 q2, but
q1 


′ q2. Since q1 C q2, removing (q1,q2) from 6 does not impair transitivity and 6′ indeed
is a partial order.

Now, consider the function e′ : P→ Q′ that coincides with e on the underlying sets. We
want to show that e′ is order-preserving. For this, let x,y ∈ P. It suffices to consider two
cases only: e(x) = q1 and e(y) = q2, and viceversa. In any other case, e′ preserves order
just because e does. Suppose, without loss of generality, x ∈ e−1(q1) and y ∈ e−1(q2). Then,
x 
P y, for else the chain p1, x,y, p2 would satisfy conditions (1) and (2) in Definition 2.7,
contradicting p1  πe p2. Moreover, y 
P x, because e is order preserving. Thus, for each
x ∈ e−1(q1) and y ∈ e−1(q2), x and y are incomparable. Summing up, e′ is order preserving.
Since e′ coincides with e on the underlying sets, we obtain e′ ◦ f = e′ ◦g.

By Definition 2.6 we can find a unique morphism ψ : Q→ Q′ such that the diagram in
Figure 2.12 commutes. Take x,y ∈ P such that e(x) = e′(x) = q1 and e(y) = e′(y) = q2. Thus,

Figure 2.12: Proof of Proposition 2.4.

we should have ψ(q1) = q1 and ψ(q2) = q2 but, by hypothesis, q1 6 q2 and q1 

′ q2, and

such a ψ would not be order-preserving. Since f and g satisfy e◦ f = e◦g but are otherwise
arbitrary, this would contradict the fact that e is a regular epimorphism. Therefore, e has to
be fibre-coherent.

Case (ii). Suppose q1 6 q2. Then there exists a sequence k1,k2, . . . ,ku ∈ Q such that q1 =

k1 C k2 C · · · C ku = q2. Let x1, x2, . . . , xu ∈ Q be such that xi ∈ e−1(ki), for each i ∈ {1,n}, and
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suppose x1 .πe x2 .πe · · · .πe xu. Since p1 ∈ e−1(k1) and p2 ∈ e−1(ku) imply p1 .πe x1 and
xu .πe p2, then, by transitivity, p1 .πe p2, contradicting our hypothesis. Thus, there exists an
index j such that k j C k j+1, but x j  πe x j+1. The proof follows now the same steps of Case
(i), with x j and x j+1 playing the role of p1 and p2, respectively.

(⇐) Let (P,6P) and (Q,6) be posets, and let e : P→ Q be a fibre-coherent surjection.
Consider the poset R ⊆ P×P, having underlying set {(r1,r2) ∈ P×P | e(r1) = e(r2)}, endowed
with the order 6R defined by (r1,r2) 6R (s1, s2) if and only if r1 6P s1 and r2 6P s2. Let
f ,g : R→ P be the projection functions of R, i.e., f and g are the order-preserving maps such
that, for each r = (r1,r2) ∈ R, f (r) = r1, g(r) = r2. Clearly, e◦ f = e◦g.

We need to show that e is a regular epimorphism. For this, consider a poset (Q′,6′) and
an order-preserving map e′ : P→ Q′ such that e′ ◦ f = e′ ◦ g. Note that, for each q ∈ Q, if
x, y ∈ e−1(q), there exists r ∈ R such that f (r) = x and g(r) = y. Thus, from e′ ◦ f = e′ ◦ g
follows that e′(x) = e′(y). Since e is a surjection, we can construct a map ψ : Q→ Q′ by
setting ψ(q) = e′(x) for some x ∈ e−1(q), where q ∈ Q.

Let now q1,q2 ∈ Q with q1 6 q2, and let x1, x2 ∈ P be such that e(x1) = q1, e(x2) =
q2. By Definition 2.8, we have x1 .πe x2. Thus, by Definition 2.7 there exists a sequence
y0,z0,y1,z1, . . . ,yn,zn ∈ P with x1 = y0 and x2 = zn such that e(yi) = e(zi), for i = 0, . . . ,n, and
z j 6P y j+1, for j = 0,1, . . . ,n−1. Moreover, from e′ ◦ f = e′ ◦g it follows that e′(yi) = e′(zi),
and, since e′ is order-preserving, we have e′(z j) 6′ e′(y j+1). Thus, e′(y0) = e′(z0) 6′ e′(y1) =
e′(z1) 6′ · · · 6′ e′(yn) = e′(zn). Therefore, we have ψ(q1) = e′(x1) 6 ψ(q2) = e′(x2) and ψ

is order-preserving. The morphism ψ is now well defined and, by construction, satisfies
e′(x) = ψ(e(x)) for all x ∈ P.

Let ψ′ be another map from Q to Q′, ψ , ψ′, and let q be an element of Q such that
ψ(q) , ψ′(q). Since e is surjective, there exists x ∈ P such that e(x) = q. Then from ψ′(q) ,
ψ(q) and e′(x) = ψ(q) we have ψ′(q) , e′(x) and ψ′ ◦ e , e′. Hence, ψ : Q→ Q′ is the unique
function such that ψ◦ e = e′. Summing up, for an arbitrary morphism e′ : P→ Q′ such that
e′ ◦ f = e′ ◦g, there exists a unique order preserving map ψ : Q→ Q′ such that ψ◦e = e′, i.e.,
e is a regular epimorphism. �

2.4 Factorization systems for Poset

To close this categorical chapter we analyze factorization systems for the category Poset.
We denote by regular epi the class of all regular epimorphisms in a given category, and by
regular mono the class of all regular monomorphisms. It is not difficult to see that each of
these classes contains all isomorphisms. A first lemma shows another important property of
regular epi and regular mono.

Lemma 2.1. In the category Poset, regular mono and regular epi are closed under com-
position.

Proof. Trivially, composition of order-preserving maps is order-preserving, composition of
surjections is surjective, and composition of injections is injective.
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Let f : A→ B and g : B→ C be regular monomorphisms. Then, by Proposition 2.3, f
and g are order-embeddings and for each pair x,y ∈ A, x 6 y if and only if f (x) 6 f (y) in B if
and only if g( f (x)) 6 g( f (y)) in C, so g◦ f is regular mono.

Let now f : A→ B and g : B→C be regular epimorphisms. By Proposition 2.4, f and g
are fibre-coherent surjections. Note that g◦ f is an order-preserving surjection.

Claim (1). For each pair a1,a2 ∈ A, a1 .π f a2 implies a1 .πg◦ f a2.
Consider a sequence x0,y0, x1,y1, . . . , xn,yn, with x0 = a1 and yn = a2, satisfying conditions
(1) and (2) in Definition 2.7, with respect to π f . Since, for all x,y ∈ A, f (x) = f (y) implies
g( f (x)) = g( f (y)), the same sequence satisfies the same conditions with respect to πg◦ f .

Claim (2). For each pair a1,a2 ∈ A, f (a1) .πg f (a2) implies a1 .πg◦ f a2.
Consider a sequence x0,y0, x1,y1, . . . , xn,yn, with x0 = f (a1) and yn = f (a2), satisfying con-
ditions (1) and (2) in Definition 2.7, with respect to πg. Construct a sequence of elements of
A, x′0,y

′
0, x
′
1,y
′
1, . . . , x

′
n,y
′
n, such that x′i ∈ f −1(xi), y′i ∈ f −1(yi), for all i = 0, . . . ,n, and x′0 = a1,

y′n = a2. Since, for all i, g(xi) = g(yi), we have g( f (x′i )) = g( f (y′i )). Moreover, as y j 6 x j+1

for all j = 0, . . . ,n−1 and f is fibre-coherent, we have y′j .π f x′j+1. By Claim (1), we obtain
y′j .πg◦ f x′j+1. It is now easy to expand our sequence of elements of A to a sequence satisfying
conditions (1) and (2) in Definition 2.7, with respect to πg◦ f , and we obtain a1 .πg◦ f a2.

Claim (3). For each pair a1,a2 ∈ A, g( f (a1)) 6 g( f (a2)) implies a1 .πg◦ f a2.
Since g( f (a1)) 6 g( f (a2)) and g is fibre-coherent, we have f (a1) .πg f (a2) and, by Claim (2),
a1 .πg◦ f a2.

Claim (4). For each pair a1,a2 ∈ A, a1 .πg◦ f a2 implies g( f (a1)) 6 g( f (a2)).
Consider a sequence x0,y0, x1,y1, . . . , xn,yn, with x0 = a1 and yn = a2, satisfying conditions
(1) and (2) in Definition 2.7, with respect to πg◦ f . Since g ◦ f is order-preserving, we
have g( f (x0)) = g( f (y0)) 6 g( f (x1)) = g( f (y1)) 6 · · · 6 g( f (xn)) = g( f (yn)), that is g( f (a1)) 6
g( f (a2)).

By Claims (3) and (4), g◦ f is fibre-coherent. �

At this point, what we have is four classes of morphisms (including epi and mono),
closed under composition, and each containing all isomorphisms. These are our candidates
for a factorization system in Poset. After another preparatory lemma, we will be ready
to show that there are two different factorization systems for our category, each dual to the
other.

Lemma 2.2. If each morphism of a category K has (regular epi,mono) factorization, then
this factorization is essentially unique. Dually, if each morphism of a category K has
(epi,regular mono) factorization, then this factorization is essentially unique.

Proof. We refer to Figure 2.13. Suppose that, for a morphism f : A→C, m◦e = f =m′ ◦e′,
with e, e′ regular epimorphisms and m, m′ monomorphisms. Then, there exists a, b with
e◦a = e◦b satisfying condition (2) in Definition 2.6. As m′ ◦ e′ ◦a = m◦ e◦a = m′ ◦ e′ ◦b =
m◦e◦b, and m′ is mono, e′ ◦a = e′ ◦b. Therefore, there exists a unique g such that g◦e = e′.
Since e is epi, m′◦g=m. Symmetrically, there exists h : B′→ B with h◦e′ = e and m◦h=m′.
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Figure 2.13: Proof of Lemma 2.1.

Since e is epi (or since m is mono), we infer h ◦ g = idB. Symmetrically, g ◦ h = idB′ . The
proof of the second statement of the lemma is analogous. �

Proposition 2.5. (epi,regular mono) is a factorization system for the category Poset. Du-
ally, (regular epi,mono) is a factorization system for the category Poset.

Proof. Let (P,6P) and (Q,6Q) be posets, and let f : P→ Q be a morphism. Let f̂ : P→ Q
be the function such that f̂ (p) = f (p) for all p ∈ P, and consider the poset ( f̂ (P),6), where
6 is the restriction of 6Q to f̂ (P), i.e., for all x,y ∈ f̂ (P), x 6 y if and only if x 6Q y. Then,
consider the functions ê : P→ f̂ (P), defined by ê(p) = f (p), for all p ∈ P, and m̂ : f̂ (P)→
Q, defined by m̂(q) = q, for all q ∈ f̂ (P). By construction, ê can be regarded as an order-
preserving surjection e : P→ f̂ (P) and m̂ can be regarded as an order-embedding m : f̂ (P)→
Q. Moreover, f = m ◦ e. Therefore, in Poset, every morphism has an (epi,regular mono)
factorization. Lemma 2.2 guarantees that this factorization is essentially unique, and, by
Lemma 2.1, (epi,regular mono) is a factorization system for Poset.

Let P,Q, f , f̂ be as in the above, and consider a poset ( f̂ (P),6), where 6 is the partial
order on f̂ (P) such that for all x,y ∈ f̂ (P), x 6 y if and only if x 6Q y and for each p1 ∈
f −1(x), p2 ∈ f −1(y), p1 .π f p2. Consider now the functions ê : P→ f̂ (P), defined by ê(p) =
f (p), for all p ∈ P, and m̂ : f̂ (P)→ Q, defined by m̂(q) = q, for all q ∈ f̂ (P). By construction,
ê can be regarded as a fibre-coherent surjection e : P → f̂ (P) and m̂ can be regarded as
an order-preserving injection m : f̂ (P)→ Q. Moreover, f = m ◦ e. Therefore, in Poset,
every morphism has a (regular epi,mono) factorization. Lemma 2.2 guarantees that this
factorization is essentially unique, and, by Lemma 2.1, (regular epi,mono) is a factorization
system for Poset. �

The following example shows how to factor a given morphism in Poset.

Example 2.4. Let (P,6P) and (Q,6Q) be the posets represented in Figure 2.14. Let g : P→Q
be the order-preserving map defined by g(a) = y, g(b) = g(d) = x, g(c) = z. Let ĝ : P→ Q be
the function such that ĝ(p) = g(p) for all p ∈ P.
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Figure 2.14: Example 2.4.

Consider the poset (ĝ(P),6′), where 6′ is the restriction of 6Q to ĝ(P), and the morphisms
e : P→ ĝ(P) such that e(a) = y, e(b) = e(d) = x, e(c) = z, and m : ĝ(P)→ Q such that m(x) = x,
m(y) = y, m(z) = z. Then, e is epi, m is regular mono, and g factors as g = m◦ e.

Consider now the poset (ĝ(P),6′′), where 6′′ is the partial order on ĝ(P) such that for
all x,y ∈ ĝ(P), x 6′′ y if and only if x 6Q y and for each p1 ∈ g−1(x), p2 ∈ g−1(y), p1 .πg p2.
Let e′ : P→ ĝ(P) such that e′(a) = y, e′(b) = e′(d) = x, e′(c) = z, and m′ : ĝ(P)→ Q such
that m′(x) = x, m′(y) = y, m′(z) = z. Then, e′ is regular epi, m′ is mono, and g factors as
g = m′ ◦ e′.

2.5 Bibliographic notes

The categorical notions used in this chapter can be found, in different variants, in almost
every book concerned with categories. We cite, for example, [AHS04], [AM75], [HS73],
[Man76], [GZ02].

For our definitions of isomorphism, epimorphism, monomorphism, regular epimorphism
and regular monomorphism, we refer, in particular, to [AHS04, Ch. II.7 and Def. 3.8]. The
formal definition of category is taken from [AM75, Pag. 29], and the proof of Lemma 2.2 is
taken from [Man76, Prop. 1.49].

Chapter IV of [AHS04] gives a thorough analysis of factorization systems in general
categories.



Chapter 3
Partitioning a poset

. . . as bit by bit it starts the need to just let go my party piece.

Robert Smith

3.1 Partitions: from sets to posets

In the previous chapter, we have introduced set-theoretic partitions. A formal definition of
partition of a set is given in the following.

Definition 3.1. A partition of a set A (also called set partition) is a collection π= {B1,B2, . . . ,Bk}
of subsets of A such that, for each i, j ∈ {1, . . . ,k},

a. Bi , ∅,

b. Bi∩B j = ∅ for i , j,

c. B1∪B2∪ · · ·∪Bk = A.

We call Bi a block of π, and we say that π has k blocks, i.e., |π| = k.

There are many other ways to define partitions. For instance, one can define partitions
by means of equivalence relations. This will be useful in the next chapter. A definition of
partitions can also be given in terms of functions between sets, as follows.

Definition 3.2. A partition of a set A is the set π f of fibres of a surjection f : A→ C, for
some set C.

It is an exercise to check that partitions in the sense of Definition 3.2 coincide with
partitions as introduced in Definition 3.1.

Example 3.1. Let A = {a,b,c,d,e} be a set, and consider a surjection f : A→ C, with C =
{x,y,z} and f defined as f (a) = x, f (b) = f (c) = y, f (d) = f (e) = z. The set of fibres π f =

{{a}, {b,c}, {d,e}} is a partition of A.

To arrive at a definition of partition of a partially ordered set, we focus on partitions
of a set as collection of fibres. The question arises, which kind of “surjections” should we
consider in adapting Definition 3.2 to posets? The answer to this question is given by the
previous chapter. We should consider two different kinds of surjections between posets,
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Figure 3.1: Example 3.1.

namely, order-preserving surjections, i.e., epimorphisms, and fibre-coherent surjections, i.e.,
regular epimorphisms. From these two types of surjections we will obtain two different
notions of partitions.

Notation. From now on, we make use of the symbol 4 to denote a partial order between
blocks of a partition. As in the previous chapter, the symbol 6 denotes the partial order
relation between elements of a poset, and the symbol . denotes quasiorder relations. In
particular, we use the symbol .π to denote a blockwise quasiorder with respect to a partition
π, as defined in Definition 2.7.

Definition 3.3. A monotone partition of a poset P is a poset (π f ,4), where π f is the set of
fibres of an order-preserving surjection f : P→ Q, for some poset Q, and 4 is the partial
order on π f defined by

f −1(q1) 4 f −1(q2) if and only if q1 6 q2 , (3.1)

for each q1,q2 ∈ Q.

Example 3.2. Consider the morphism f : P→ Q between posets depicted in Figure 3.2.
Since f is an order-preserving surjection, the poset (π f ,4) as in Definition 3.3 is a monotone
partition of P.

Figure 3.2: Example 3.2.
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Definition 3.4. A regular partition of a poset P is a poset (π f ,4), where π f is the set of
fibres of a fibre-coherent surjection f : P→ Q, for some poset Q, and 4 is the partial order
on π f defined by

f −1(q1) 4 f −1(q2) if and only if q1 6 q2 , (3.2)

for each q1,q2 ∈ Q.

Remark 3.1. Each regular partition is a monotone partition, just because each fibre-coherent
surjection is an order-preserving surjection (see Section 2.3).

Example 3.3. Consider the morphism g : P→ Q between posets depicted in Figure 3.3.
Since the morphism g is a fibre-coherent surjection, the poset (πg,4), where πg is the set of
fibres of g and 4 is the partial order induced by g according to Definition 3.4, is a regular
partition of P. Note that the poset (π f ,4) in Figure 3.2 is not a regular partition of P, because
f is not a fibre-coherent map (see Example 2.3).

Figure 3.3: Example 3.3.

Returning for a moment to sets, we note that while Definition 3.1 and Definition 3.2
are indeed equivalent, the former is definitely more common. Indeed, since Definition 3.1
does not mention morphisms, it may be considered more readable. Besides, it allows us to
visualize a partition just by looking at the set we want to partition.

What we need now, and what we will give in the coming sections, are intrinsic character-
izations of the two kinds of partitions of a poset that we have introduced in Definitions 3.3
and 3.4, namely, monotone and regular partitions.

3.2 Monotone partitions

The following theorem gives a characterization of monotone partitions of partially ordered
sets.

Theorem 3.1. If P is a poset, (π = {B1,B2, . . . , Bk},4) is a monotone partition of P if and
only if π is a partition of the underlying set of P, and 4 is a partial order on π such that for



3.3. Regular partitions 25

each pair Bi, B j of blocks of π, and for all x ∈ Bi, y ∈ B j,

x 6 y implies Bi 4 B j . (3.3)

Proof. (⇐) Let π = {B1, B2, . . . ,Bk} be a partition of the underlying set of a poset P, and let
4 be a partial order on π satisfying Condition (3.3). Consider the function f̂ : P→ π which
sends each element of P to its block in π. Clearly, f̂ is a surjection, because a partition does
not have empty blocks. Moreover, by Condition (3.3), the function f̂ can be regarded as an
order-preserving surjection f : P→ (π,4), having π as its set of fibres. Since f −1(Bi) = Bi

for each i ∈ {1, . . . ,k}, the partial order 4 satisfies Condition (3.1) in Definition 3.3, and (π,4)
is a monotone partition of P.

(⇒) Let f : P→ Q be an order-preserving surjection, and let (π f = {B1, B2, . . . ,Bk},4)
be a monotone partition of the poset P. Since the function f is surjective, then π f is a
partition of the underlying set of P. Consider now x ∈ Bi and y ∈ B j, with i, j ∈ {1, . . . ,k},
such that x 6 y in P. Since f is order-preserving, f (x) 6 f (y) holds and, by Definition 3.3,
Bi = f −1( f (x)) 4 B j = f −1( f (y)). �

Example 3.4. Figure 3.4 shows three different monotone partitions of the poset P. It is easy
to check that Condition (3.3) holds for each of the partial orders 41, 42, 43.

Figure 3.4: Example 3.4.

3.3 Regular partitions

The following theorem gives a characterization of regular partitions of partially ordered sets.

Theorem 3.2. If P is a poset, (π = {B1,B2, . . . , Bk},4) is a regular partition of P if and only
if π is a partition of the underlying set of P, and 4 is a partial order on π such that for each
pair Bi, B j of blocks of π, and for all x ∈ Bi, y ∈ B j,

x .π y if and only if Bi 4 B j , (3.4)

where .π is the blockwise quasiorder induced by π.
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Proof. (⇐) Let π = {B1,B2, . . . ,Bk} be a partition of the underlying set of a poset P and let 4
be a partial order on π satisfying Condition (3.4). Consider the surjection f̂ : P→ π which
sends each element of P to its block in π. We can immediately note that for the function f̂
Condition (3.4) is equivalent to the fibre-coherent condition in Definition 2.8, and f̂ can be
regarded as a fibre-coherent surjection f : P→ (π,4), having π as its set of fibres. Moreover,
since f −1(Bi) = Bi for all i, the partial order 4 satisfies Condition (3.2) in Definition 3.4 and
(π,4) is a regular partition of P.

(⇒) Let f : P→ Q be a fibre-coherent surjection, and let (π f = {B1, B2, . . . ,Bk},4) be
a regular partition of the poset P. Since the function f is surjective, then π f is a partition
of the underlying set of P. Consider x ∈ Bi and y ∈ B j, with i, j ∈ {1, . . . ,k}. By Definition
2.8, x .π f y if and only if f (x) 6 f (y). By Definition 3.4, f (x) 6 f (y) if and only if Bi =

f −1( f (x)) 4 B j = f −1( f (y)). Thus, x .π f y if and only if Bi 4 B j. �

Example 3.5. Figure 3.4 shows a regular partition of the poset P. Condition (3.4) holds. In
fact, d .π c, and the other elements satisfy the condition trivially. If we look at the previous
example, Figure 3.4, one can easily check that 41 and 42 do not satisfy Condition (3.4),
while (π,43) is regular.

Figure 3.5: Example 3.5.

3.4 Extending set partitions to monotone partitions

Theorems 3.1 and 3.2 characterize monotone and regular partitions. They allow us to con-
struct partitions of a poset just by looking at the poset itself, without considering morphisms.
Nevertheless, constructing and recognizing such partitions remains a nontrivial task. In this
section, we give some corollaries which help simplifying this task. A first corollary intro-
duces a new condition useful to construct partitions of posets starting from partitions of the
underlying sets. In other words, we show how to extend a set partition π to a partition of a
poset P, endowing π with an order 4 between blocks that makes (π,4) become a monotone
partition of P.

Corollary 3.3. Let P be a poset, and π a set partition of P. Then, π admits an extension to a
monotone partition of the poset P if and only if for all x,y ∈ P, x .π y and y .π x imply that
there is B ∈ π such that x,y ∈ B.
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Proof. (⇒) Suppose that the set partition π= {B1, . . . ,Bk} of P can be extended to a monotone
partition (π,4). By Theorem 3.1 we can construct an order-preserving surjection f : P→ π

such that the set π f of the fibres of f coincides with π. Let x.π y and y.π x, for some x,y ∈ P,
with x ∈ Bi and y ∈ B j. Then, there exist two sequences x = x0,y0, x1,y1, . . . , xn,yn = y and
y = z0,w0, . . . ,zm,wm = x satisfying Conditions (1) and (2) in Definition 2.7 with respect to
π. Since f is order-preserving, we have

Bi = f (x) = f (x0) = f (y0) 4 f (x1) = f (y1) 4 · · · 4 f (xn) = f (yn) = f (y) = B j, and
B j = f (y) = f (z0) = f (w0) 4 f (z1) = f (w1) 4 · · · 4 f (zm) = f (wm) = f (x) = Bi.

Thus, we have Bi = B j.

(⇐) Let π = {B1, . . . ,Bk} be a set partition of P such that for all x,y ∈ P, x .π y and y .π x
imply x,y ∈ B ∈ π. Define the binary relation 4 on π by prescribing that for all Bi, B j ∈ π, and
for all x ∈ Bi, y ∈ B j, x .π y if and only if Bi 4 B j. It is immediate to check that 4 is a partial
order. By Theorem 3.2, (π,4) is a monotone partition – in fact, a regular one. �

For regular partitions one can say more: a set partition of P admit at most one extension
to a regular partition of the poset P. The results for regular partitions are even stronger.
First, we have that the same condition as in Corollary 3.3 is the necessary condition for a
set partition π to be extended to a partition of a poset. Second, if this extension exists, it is
unique.

Corollary 3.4. Let P be a poset, and π a set partition of P. Then, π admits an extension to
a regular partition of the poset P if and only if for all x,y ∈ P, x .π y and y .π x imply that
there exists B ∈ π such that x,y ∈ B. In case such an extension exists, it is unique.

Proof. (⇒) Each regular partition is a monotone partition, and the result follows directly
from Corollary 3.3.

(⇐) The monotone partition (π,4) of P constructed in the proof of Corollary 3.3 is reg-
ular. To see that it is unique, consider an extension of the set partition π = {B1, . . . ,Bk} of P
to a regular partition (π,4′) of P. Then, 4′ must be such that for each Bi, B j ∈ π, and for all
x ∈ Bi, y ∈ B j, x .π y if and only if Bi 4 B j, for else we would violate the necessary Condition
(3.4) in Theorem 3.2. �

For “small” posets P, using these two corollaries it is easy to check whether a set partition
π of the underlying set of P can be extended to a poset partition of P.

Example 3.6. Consider the poset P shown in Figure 3.6 with the depicted set partition π =
{{a, x}, {b,z}, {c,y}, {d,w}}. The elements a,d of P are such that a .π d (witness the sequence
a,a,y,c,w,d) and d .π a (witness the sequence d,d,z,b, x,a), but a and d are not in the same
block. Thus, there is no partition of P having π as its underlying set.

Example 3.7. We show by example that the uniqueness assertion in Corollary 3.4 fails
for monotone partitions. Consider the trivially ordered set P shown in Figure 3.7. The
underlying set of P has only two set partitions, each extendable to a partition of the poset
P. The partition {{a}, {b}} has one extension (Figure 3.7(1)) to a regular partition, and three
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Figure 3.6: Example 3.6.

extensions (Figure 3.7(2)) to monotone partitions. The partition {{a,b}} can be extended to a
monotone partition in just one way.

Figure 3.7: Example 3.7.

Example 3.8. Figure 3.8 shows the 14 monotone partitions of the poset P (the same used in
Examples 2.3, 3.2, 3.3, 3.4, and 3.5). Regular partitions are shaded.

In the next chapter, we give a lattice structure to the collection of monotone (or regular)
partitions of a poset P. To achieve this, we shall give a representation of partitions of posets
in terms of quasiorders.

3.5 Bibliographic notes

While set partitions have been discussed in many books (e.g., [Com74],[Sta97], [Aig79]) and
papers (e.g., [Rot64a]), the literature on partitioning partially ordered sets is rather scant. In
particular, we are not aware of the previous appearance of Definitions 3.3 and 3.4 and the
related thing. However, a significative item is [Ric98], where the author investigates partially
ordered set-theoretic partitions, which turn out to be monotone partitions (in our sense) of
trivially ordered sets.
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Figure 3.8: Example 3.8.



Chapter 4
The lattices of partitions

Order is the shape upon which beauty depends.

Pearl Buck

4.1 Partitions as quasiorders

Awell-known elementary result establishes a connection between set partitions and equiv-
alence relations, i.e., reflexive, transitive, and symmetric relations. This connection can

be expressed as follows.

Fact 4.1. Any partition π of a set A determines the equivalence relation ≡ on A such that
a ≡ b whenever a and b belong to the same block of π. Conversely, any equivalence relation
≡ on a set A determines the partition π of A whose blocks consist of the equivalence classes
of ≡.

Thanks to this connection, when studying the structure of all partitions of a given set, one
can look at the collection of equivalence relations on that set, and viceversa. Let us indicate
with Π the collection of all partitions of a set A. Π is partially ordered by

π1 6 π2 if and only if each block in π1 is obtained by subdivision of the blocks in π2.

If π1 6 π2 holds, we say that π1 is a refinement of π2. We can observe that the poset (Π,6) has
both bottom and top elements. The bottom element is the partition of A having all singleton
blocks. The top element is the one block partition. Equivalently, we can consider Π to be
the collection of all equivalence relations on A. A partial order on this set can be defined as
the set-theoretic inclusion between relations. The poset obtained has as bottom element the
identity relation, i.e., the relation ≡I such that for any a,b ∈ A, a ≡I b if and only if a = b.
The top element is the universal relation, i.e., the relation ≡U such that for any a,b ∈ A,
a ≡U b. A fundamental result for the structure of set partitions, or equivalence relations, is
the following.

Fact 4.2. The collection of all partitions or all equivalence relations of a set A forms a
complete lattice. We call this lattice the partition lattice of A.

We seek to generalize the relationship between equivalence relations and partitions in-
troduced in Fact 4.1 to an analogous relationship between partitions of partially ordered sets
and quasiorder relations, i.e., reflexive and transitive relations. The aim is to obtain the
analogous of Fact 4.2 for monotone and regular partitions.
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Notation. Recall that, as in the previous chapters, we use the symbol . to denote quasiorder
relations. Whenever . is used to denote a blockwise quasiorder (see Definition 2.7), it is
denoted .π, where π is a partition.

The following result holds for monotone partitions.

Proposition 4.1. There is a bijection between monotone partitions of a poset (P,6) and
quasiorders on P extending 6.

Specifically, we can construct this bijection associating with each monotone partition
(π,4) a quasiorder . by setting, for any B,C ∈ π, and for x ∈ B, y ∈C,

B 4C if and only if x . y. (4.1)

To the underlying partition π there corresponds the set of equivalence classes of the equiva-
lence relation ≡ induced by ., that is, the equivalence relation defined as

x ≡ y if and only if x . y and y . x, (4.2)

for any x,y ∈ P.

Proof. A quasiorder . on a set P may allow both x . y and y . x to hold for certain pairs
x,y ∈ P. Then, we can define a relation ≡ on P such that

x ≡ y if and only if x . y and y . x,

and immediately notice that ≡ is an equivalence relation. Thus, the quasiorder . defines a
set of equivalence classes [x]≡ = {y ∈ P | x ≡ y}. By Fact 4.1, the set π = {[x]≡ | x ∈ P} is a
partition of P. Consider now the relation 4 on π defined, for B,C ∈ π, by

B 4C if and only if x . y, for each x ∈ B, y ∈C.

Observe that B 4 C and C 4 B hold if and only if x . y and y . x, that is if and only if
B =C. One can easily check that 4 is a partial order on π. Moreover, by hypothesis, for each
B,C ∈ π, and for any x ∈ B, y ∈ C, x 6 y implies x . y. Thus, 4 satisfies Condition (3.3) in
Theorem 3.1 and (π,4) is a monotone partition of (P,6).

Conversely, let (π,4) be a monotone partition of a poset (P,6). Define a relation . on P
as follows, for x ∈ B, y ∈C, with B,C ∈ π.

x . y if and only if B 4C.

Observe that, by Condition (3.3) in Theorem 3.1, x 6 y implies B 4 C. We immediately see
that . is a quasiorder on P which extends 6. Moreover, according to Fact 4.1, the equivalence
relation induced by . defines precisely the partition π. �

We give an example of the connection between monotone partitions and quasiorders.
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Figure 4.1: Example 4.1.

Example 4.1. Figure 4.1 shows a monotone partition π of a poset P.
The corresponding quasiorder defined as in Proposition 4.1 is

. = {(a,a), (b,b), (c,c), (d,d), (a,b), (b,a), (a,c), (b,c), (a,d), (b,d), (d,c)} .

Conversely, let us begin with the quasiorder . above. Then . induces the equivalence
relation

≡ = {(a,a), (b,b), (c,c), (d,d), (a,b), (b,a)}

on the set P, and thus a partition π of P. The order relation 4 on the blocks of π, defined as
in Proposition 4.1, is

4 = {([a]≡, [a]≡), ([c]≡, [c]≡), ([d]≡, [d]≡), ([a]≡, [c]≡), ([a]≡, [d]≡), ([d]≡, [c]≡)} .

An analogous connection can be obtained for regular partitions. Let us denote by tr (R)
the transitive closure of a binary relation R.

Proposition 4.2. Let (π= {B1,B2, . . . ,Bk},4) be the monotone partition of (P,6) induced by a
quasiorder . on P as in Proposition 4.1. Consider the binary relation ρ= {(x,y) ∈ P×P | x .
y, x 
 y, y  x} . Then π is a regular partition of (P,6) if and only if

. = tr (. \ ρ) . (4.3)

Proof. Let .′= tr (. \ ρ) .

Suppose that p .π q, for p,q ∈ P, with the intent of showing p .′ q. Then, by Definition
2.7, there exists a sequence x0,y0, x1,y1, . . . , xn,yn ∈ P, with p = x0 and q = yn, satisfying the
following.

1. For all i ∈ {0, . . . ,n}, there exists j such that xi,yi ∈ B j.

2. For all i ∈ {0, . . . ,n−1}, yi 6 xi+1.

By the first condition, xi . yi and yi . xi. Thus, (xi,yi), (yi, xi) < ρ and xi .′ yi, yi .′ xi. By
2., yi 6 xi+1, thus (yi, xi+1) < ρ. Since yi . xi+1, we also have yi .′ xi+1. Therefore, we have
x0 .′ y0 .′ x1 .′ y1 .′ · · · .′ xn .′ yn and, by transitivity, p .′ q.
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Suppose now that, for some p,q ∈ P, we have p .′ q, with the intent of showing p .π q.
Observe that p . q, because .′⊆.. We want to construct a sequence p = x0 .′ y0 .′ x1 .′

y1 .′ · · · .′ xn .′ yn = q of elements of P such that, for all i ∈ {0, . . . ,n}, xi . yi and yi . xi,
and, for all j ∈ {0, . . . ,n− 1}, y j 6 x j+1. We shall analyze three different cases, covering all
the possibilities for p and q.

(Case 1). p . q and q . p. In this case we can set x0 = p and y0 = q, thus obtaining the
desired sequence, with n = 0.

(Case 2). p 6 q, but q  p. In this case we can set x0 = y0 = p and x1 = y1 = q, obtaining
the desired sequence, with n = 1.

(Case 3). (p,q) ∈ ρ, i.e. p . q, p 
 q, and q  p. Since p .′ q, the pair (p,q) arises in .′

from the transitive closure of . \ρ. Thus, there exists a sequence p = z0 .′ z1 .′ · · · .′ zr = q
of elements of P such that (zi,zi+1) ∈. \ρ for all i = 0, . . . ,r. The following steps are now
needed to obtain the desired sequence.

(1) If, for some j ∈ {1, . . . ,r−1}, we have z j−1 . z j . z j+1, and z j+1 . z j . z j−1, we remove
from the sequence the element z j, obtaining thus a new sequence · · · .′ z j−1 .′ z j+1 .′ · · · .
Since z j−1 . z j+1 and z j+1 . z j−1 the properties of the sequence are preserved.

(2) If for some j ∈ {1, . . . ,r−1}, we have z j−1 6 z j 6 z j+1, we duplicate the element z j in
the sequence, obtaining thus the sequence · · · .′ z j−1 .′ z j .′ z j .′ z j+1 .′ · · · .

In any case, by Definition 2.7, we have p .π q.

We conclude that .′ = .π. From Theorem 3.2, we have that π is a regular partition if and
only if for any Bi, B j ∈ π, and for all p ∈ Bi, q ∈ B j,

Bi 4 B j if and only if p .π q if and only if p .′ q.

Therefore, π is a regular partition if and only if .=.′= tr (. \ ρ), and the proof is complete.
�

Proposition 4.2 shows that there is a bijection between regular partitions of a poset (P,6)
and quasiorders . on P extending 6 and such that .= tr (. \ ρ), where ρ is defined as in the
proposition. An example may clarify the bijection at hand.

Example 4.2. Consider the poset P and its partition π used in Example and Figure 4.1.
Recall that the quasiorder corresponding to π according to Proposition 4.1 is

.= {(a,a), (b,b), (c,c), (d,d), (a,b), (b,a), (a,c), (b,c), (a,d), (b,d), (d,c)} .

The set ρ = {(x,y) ∈ P×P | x . y, x 
 y, y  x} contains only the pair (d,c). Thus, tr(. \ρ) =
{(a,a), (b,b), (c,c), (d,d), (a,b), (b,a), (a,c), (b,c), (a,d), (b,d)},., and the partition associated
with . is not a regular partition.

Consider now the poset P′ and its partition π′ depicted in Figure 4.2. The quasiorder
corresponding to π′ according to Proposition 4.1 is

.= {(a,a), (b,b), (c,c), (d,d), (a,b), (a,c), (b,c), (a,d), (b,d), (d,b), (d,c)} .

Since ρ′ = {(d,c)}, we have that tr(. \ρ′) =. and π′ is a regular partition.
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Figure 4.2: Example 4.2.

4.2 Partition lattices

In the light of Propositions 4.1 and 4.2, we can think of partitions as quasiorders. More
precisely, each quasiorder . such that 6 ⊆ . ⊆ P×P defines a unique monotone partition
of (P,6). Moreover, when (and only when) . satisfies Condition (4.3) in Proposition 4.2,
then . defines a regular partition of (P,6). Defining an appropriate order between partitions
now becomes an easy task, as we can simply consider the set-theoretic inclusion between
the associated quasiorders. In this section we obtain the analog of Fact 4.2 for monotone and
regular partitions of a poset.

Proposition 4.3. The collection of monotone partitions of (P,6) is a lattice when partially
ordered by set-theoretic inclusion between the corresponding quasiorders.

Specifically, let π1 and π2 be monotone partitions of (P,6), and let .1 and .2 be the
quasiorders corresponding to π1 and π2, respectively, as in Proposition 4.1. Then π1 ∧m π2

and π1∨m π2 (the lattice meet and join) are the partitions corresponding to the quasiorders:

.1 ∧m .2=.1 ∩ .2 , .1 ∨m .2= tr(.1 ∪ .2).

Proof. We observe that if 6⊆.1 and 6⊆.2, then 6⊆.1 ∩ .2, and 6⊆.1 ∪ .2. We also
notice that .1 ∩ .2=.1 if and only if .1⊆.2. Moreover, both ∧m and ∨m are idempotent,
commutative, and associative, because intersection and union are. Finally, the absorption
laws

.1 ∧m(.1 ∨m .2) =.1 and .1 ∨m(.1 ∧m .2) =.1

trivially hold. �

Example 4.3. Let us consider, as an example, the poset in Figure 4.3.
In the previous chapter, we have listed all (monotone and regular) partitions of P (see

Example and Figure 3.8). Figure 4.4 shows the lattice structure of the set of all monotone
partitions of P.

As anticipated, the class of regular partitions also carries a lattice structure.
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Figure 4.3: A poset P.

Figure 4.4: Example 4.3.

Proposition 4.4. The collection of regular partitions of (P,6) is a lattice when partially
ordered by set-theoretic inclusion between the corresponding quasiorders.

Specifically, let π1 and π2 be regular partitions of (P,6), let .1 and .2 be the quasiorders
corresponding to π1 and π2, respectively, and let τ= {(x,y) ∈ (.1 ∩.2)\6 | y 1 x or y 2 x}
Then π1∧r π2 and π1∨r π2 (the lattice meet and join) are the partitions corresponding to the
quasiorders:

.1 ∧r .2= tr((.1 ∩ .2) \τ) , .1 ∨r .2= tr(.1 ∪ .2).

Proof. By construction, .1 ∧r .2 defines a regular partition. We now prove that the mono-
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tone partition .1 ∨r .2 defines a regular partition, too. Consider .12=.1 ∪ .2, and let
τ12 = {(x,y) ∈.12 | x 
 y, y  12 x} . Suppose (p,q) ∈ τ12. Say, without loss of generality,
p .1 q. Then, by Proposition 4.2, there exists a sequence p = z0 .1 z1 .1 · · · .1 zr = q of ele-
ments of P such that (zi,zi+1) ∈.1 \ τ1 for all i = 0, . . . ,r, and τ1 = {(x,y) ∈.1 | x 
 y, y  1 x} .
But if (zi,zi+1) < τ1, then zi 6 zi+1, or zi+1 .1 zi. In both cases (zi,zi+1) < τ12, and thus
(zi,zi+1) ∈.12 \τ12 for all i, and (p,q) ∈ tr((.1 ∪ .2) \ τ12). Hence, tr(.1 ∪ .2) corresponds
to a regular partition.

We can easily check, by the properties of intersection and union, that ∧r and ∨r are
idempotent, commutative, associative, and satisfy the absorption laws. It remains to show
that .1 ∧r .2=.1 if and only if .1⊆.2. Suppose .1⊆.2. Then, .1 ∩ .2=.1 and, since .1

is regular, tr((.1 ∩ .2) \ τ) = tr(.1 \τ) =.1. Suppose now that tr((.1 ∩ .2) \ τ) =.1 and let
x .1 y. Then either (x,y) ∈ (.1 ∩ .2) \τ, or (x,y) is a pair arising from the transitive closure
of (.1 ∩ .2)\τ. In any case, since (.1 ∩ .2)\τ ⊆.2 and .2 is transitive, we have that x .2 y,
proving that if tr((.1 ∩ .2) \τ) =.1, then .1⊆.2. �

Example 4.4. The shaded partitions in Figure 4.4 are the regular partitions of the poset P in
Figure 4.3. Figure 4.5 depicts the lattice of regular partitions of P.

Figure 4.5: Example 4.4.

In a set partition lattice, the meet ∧ and the join ∨ can be described as follows.

Fact 4.3. Let π1 and π2 be partitions of a set A, and let π∧ = π1∧π2 and π∨ = π1∨π2. For
any x,y ∈ A,
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• x and y are in the same block of the partition π∧ if and only if they are in the same
block both in π1 and in π2,

• x and y are in the same block of the partition π∨ if and only if there exists a sequence
of blocks B1, . . . ,Bk in π1 ∪ π2 such that x ∈ B1, y ∈ Bk and for each i ∈ {1, . . . ,k− 1},
Bi∩Bi+1 , ∅.

As we will see, a similar characterization of meets and joins in the lattices of mono-
tone and regular partitions can be obtained. These characterizations are not so explanatory
nor strongly intuitive as their classical counterparts, and that is the reason why we have in-
troduced our lattices as lattices of quasiorders. Nevertheless, they will turn useful in the
following. Moreover, it seems important to us to maintain this connection with the classi-
cal case where meets and joins are more often defined in terms of blocks than in terms of
equivalence relations.

Proposition 4.5. Let (π1,41) and (π2,42) be monotone partitions of a poset (P,6), and let
(π∧m ,4∧m) = π1∧m π2 and (π∨m ,4∨m) = π1∨m π2. Let us indicate with B∧m

a , B∨m
a , B1

a and B2
a

the blocks of π∧m , π∨m , π1 and π2, respectively, containing the element a ∈ P.

• The underlying set of π∧m is the (set) partition π1 ∧π2. Moreover, for any two blocks
B,C of π∧m , B 4∧m C if and only if there exist x ∈ B and y ∈C, such that B1

x 41 B1
y and

B2
x 42 B2

y .

• For any two elements x,y ∈ P, B∨m
x 4∨m B∨m

y if and only if there exists a sequence of
elements of P, x = z1,z2, . . . ,z2k = y, such that

B1
z1
41 B1

z2
, B2

z2
42 B2

z3
, . . . , B2

z2k−2
42 B2

z2k−1
, B1

z2k−1
41 B1

z2k
. (4.4)

Proof. Consider the quasiorders .1 and .2 associated to π1 and π2, respectively, according
to Proposition 4.1, and the quasiorder .∧m associated to π∧m . By Proposition 4.3 we have
that .∧m =.1 ∩ .2. Let ≡1, ≡2 and ≡∧m be the equivalence relations endowed by .1, .2

and .∧m , respectively. By Condition (4.2) in Proposition 4.1, we have that, for any a,b ∈ P,
a≡∧m b if and only if a≡1 b and a≡2 b. This implies that a and b are in the same block of π∧m

if and only if they are in the same block of π1 and π2. By Fact 4.3, we have π∧m = π1∧π2.
Furthermore, by Condition (4.1) in Proposition 4.1, we have that B 4∧m C if and only if

x .∧m y for some x ∈ B, y ∈ C. Since x .∧m y if and only if x .1 y and x .2 y, if and only if
[x]≡1 .1 [y]≡1 and [x]≡2 .2 [y]≡2, the second part of the first statement holds.

To prove the second statement we consider, as before, the quasiorders .1 and .2 associ-
ated to π1 and π2. By Proposition 4.3 we have that B 4∨m C if and only if there exist x ∈ B
and y ∈ C such that the pair (x,y) belong to tr (.1 ∪ .2). Thus, there exists a sequence of
elements of P, x = z1,z2, . . . ,z2k = y, such that for each i ∈ {1,2k − 1}, (zi,zi+1) ∈.1 if i is
odd, and (zi,zi+1) ∈.2 if i is even. Using Condition (4.1) in Proposition 4.1, this fact can be
immediately translated in terms of partitions, deriving in this way Condition (4.4). �
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Proposition 4.6. Let (π1,41) and (π2,42) be regular partitions of a poset (P,6), and let
(π∧r ,4∧r ) = π1∧r π2 and (π∨r ,4∨r ) = π1∨r π2.

• The underlying set of π∧r is the (set) partition π1 ∧π2. Moreover, for any two blocks
B,C of π∧r , and for any x ∈ B, y ∈C, B 4∧r C if and only if x .π∧r y,

• The regular partition π∨r coincides with π1∨m π2.

Proof. We note that if two elements x,y ∈ P are in the same block of π1 and in the same block
of π2 then neither (x,y) ∈ τ nor (y, x) ∈ τ, where τ is as in Proposition 4.4. Thus, using the
same argument as in the proof of Proposition 4.5 we obtain the first part of the first statement.
The second part follows directly from Corollary 3.4.

Finally, Propositions 4.3 and 4.4 tell us that given two regular partitions π1 and π2, the
partition π1∨m π2 is regular. �

Some remarks are in order.

Remarks 4.1. Given two regular partitions π1 and π2, we notice that the partitions π1 ∧r π2

and π1∧mπ2 are not necessarily the same. In particular, even if their underlying sets coincide,
and coincide with the set-theoretic partition π1∧π2, the partial orders of π1∧r π2 and π1∧mπ2

may differ (see Example 4.5).
By contrast, as we saw in Proposition 4.6, in the monotone partition lattice the join of

two regular partitions is a regular partition, that is π1∨m π2 = π1∨r π2.

Another consequence of Proposition 4.6 is the following.

Corollary 4.7. The regular partition lattice is ordered by refinement of the underlying sets
of the regular partitions.

Proof. This is an immediate consequence of Proposition 4.6 and Corollary 3.4. �

Example 4.5. Figures 4.6 and 4.7 show two examples of meets and joins in monotone and
regular partition lattices.

Figure 4.6: How the meet operations work.
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Figure 4.7: How the join operations work.

4.3 Semilattice embedding of partition lattices

A sublattice (S ,∧,∨) of a lattice (L,∧,∨) is defined as a subset S of L with the property that
for each a,b ∈ S , a∧b,a∨b ∈ S , and the ∧ and the ∨ of S are the restrictions of the ∧ and
the ∨ of L. If S contains 0,1 ∈ L, we say that S is a {0,1}-sublattice of L. If S is a subset of
L such that for each a,b ∈ S , a∧b ∈ S , and the ∧ of S is the restriction of the ∧ of L, we say
that S is a meet-subsemilattice of L. Other notions that will be used in the following are that
of join-subsemilattice, {0,1}-meet-subsemilattice, and {0,1}-join-subsemilattice.

The following propositions establish interesting relationships among partition lattices,
monotone partition lattices and regular partition lattices.

Proposition 4.8. The regular partition lattice of a poset (P,6) is (isomorphic to) a {0,1}-
meet-subsemilattice of the partition lattice of P.

Proof. Let (Πr,∧r,∨r,0r,1r) be the regular partition lattice of (P,6), and let (Π,∧,∨,0,1) be
the partition lattice of P. Consider the map f : (Πr,∧r,∨r,0r,1r)→ (Π,∧,∨,0,1) defined by

(π,4) ∈ Πr 7→ π ∈ Π .

We claim that f is a {0,1}-meet-subsemilattice embedding, i.e., an injection that preserves
meets, top and bottom.

By Corollary 3.4 f is injective. It is an exercise to verify that 0 and 1 admit an extension
to a regular partition of P, according to Corollary 3.4. Moreover, by Proposition 4.4, 0r is
the regular partition corresponding to the quasiorder obtained by the set-theoretic union of
the identity relation on P and the order 6 of P, and 1r is the regular partition corresponding
to the universal relation on P. Thus, f (0r) = 0, and f (1r) = 1. Finally, by Proposition 4.6, for
each π1,π2 ∈ Πr, f (π1∧r π2) = f (π1)∧ f (π2). �

Proposition 4.9. The regular partition lattice of a poset (P,6) is a {0,1}-join-subsemilattice
of the monotone partition lattice of (P,6).

Proof. Let (Πm,∧m,∨m,0m,1m) be the regular partition lattice of the poset (P,6), and let
(Πr,∧r,∨r,0r,1r) be its regular partition lattice. Trivially, we obtain that Πr ⊆ Πm, 0m = 0r,
1m = 1r. By Proposition 4.6, for any π1,π2 ∈ Πr, π1∨r π2 = π1∨m π2. �
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Example 4.6. Figure 4.8 shows the regular partition lattice depicted in Figure 4.5 as a {0,1}-
meet-subsemilattice of the set {a,b,c,d}. Partitions corresponding to regular partitions are
grey. A label like a/b/cd is to be interpreted as the partition {{a}, {b}, {c,d}}. On the other
hand, an example for Proposition 4.9 is provided by Figure 4.4.

Figure 4.8: Regular partition lattices as {0,1}-meet-subsemilattices of partition lattices.

4.4 The lattice of regular partitions is ranked

Many important properties of the (set) partition lattice have been investigated, and a full
characterization of this lattice is known – see the bibliographic notes at the end of this chap-
ter. A systematic comparison between the partition lattice and the monotone and regular
partition lattices would surely be of interest. However, such a treatment will have to await
further research. Here, we limit ourselves to a short discussion on ranked and geometric
lattices. It is well known that partition lattices are both ranked and geometric.

To obtain our first result we prepare two lemmas.

Lemma 4.1. Let (π,4) be a regular partition of (P,6), and let B1,B2 ∈ π, with B1 , B2.
Let π be the (set) partition obtained from π by the union of B1 and B2, in symbols π =
(π \ {B1,B2})∪ (B1∪B2). Then, the following hold.

1. If B1 covers B2 in π, or viceversa, then π extends to a regular partition of π.

2. If B1 and B2 are incomparable in π, then π extends to a regular partition of π.

3. B1 and B2 are comparable, but neither one cover the other, if and only if π does not
extend to a regular partition of π.
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Proof. Let (π,4) be a regular partition of (P,6), and let B1,B2 ∈ π, with B1 , B2. Let π be
the (set) partition obtained from π by the union of B1 and B2.

1. Suppose, without loss of generality, that B2 covers B1. Let . be the quasiorder associ-
ated to π, according to Proposition 4.2. We construct a quasiorder by setting:

. = tr(. ∪ {(y, x) ∈ P×P | x ∈ B1,y ∈ B2}) .

We want to show that the (set) partition induced by . coincide with π. In other words, we
need to prove that for any x,y ∈ P

x . y, y . x, y  x if and only if x ∈ B1, y ∈ B2 . (4.5)

If x ∈ B1, y ∈ B2, by the definition of ., we have y . x. Since B1 4 B2 and B1 , B2, by
Condition (4.1) in Proposition 4.1, we have that x . y, and y  x, and one side of (4.5) is
proved.

Suppose now that for some z,w ∈ P such that z . w, w . z, w  z, we have z ∈ Bz , B1,
or w ∈ Bw , B2. Then, w  z arise in π by transitive closure, that is, there exist a pair (x,y),
with x ∈ B1 and y ∈ B2, such that w . y and x . w. By Condition (4.1) in Proposition 4.1 we
have Bz 4 B2 and B1 4 Bw. There are now two cases for the pair (z,w).

(Case 1). If (z,w) ∈., then x . z . w . y. By Condition (4.1) in Proposition 4.1 we have
B1 . Bz . Bw . B2. Since one of Bz , B1, Bw , B2 hold, and since Bz = B2, Bw = B1 cannot
hold, for otherwise we would have w . z, we contradict our hypothesis that B2 covers B1.

(Case 2). If (z,w) <., then (z,w) arise in π by transitive closure, that is z . y and x . w.
Thus, we have x . w . y and x . z . w. By Condition (4.1) in Proposition 4.1 we have
B1 . Bz . B2 and B1 . Bw . B2. Since one of Bz , B1, Bw , B2 hold, and since Bz = B2,
Bw = B1 cannot hold, for otherwise we would have w . z, we contradict again our hypothesis
that B2 covers B1.

Observing that . extends . and that . adds to . only pairs (y, x) such that x . y or pairs
obtainable by transitive closure, we have that the hypothesis of Proposition 4.2 are satisfied
and . is the quasiorder associated to a regular partition of P. Since π is the (set) partition
induced by ., π extends to the regular partition associated to ..

2. Suppose that B1 and B2 are incomparable in π. Let . be the quasiorder associated to
π, according to Proposition 4.2. We construct a quasiorder by setting:

. = tr(. ∪ {(x,y) ∈ P×P | x ∈ B1,y ∈ B2}∪ {(y, x) ∈ P×P | x ∈ B1,y ∈ B2}) .

We want to show that the (set) partition induced by . coincide with π. In other words, we
need to prove that the pairs of elements x,y ∈ P such that (x,y), (y, x) ∈ ., are such that x . y
and y . x, or such that x ∈ B1 and y ∈ B2. Suppose there exist (z,w), (w,z) ∈ . not satisfying
such conditions. Then, one of (z,w), (w,z), or both, arise in π by transitive closure. Say,
without loss of generality, (z,w) is such a pair. Then, there exist (x,y) <., x ∈ B1 and y ∈ B2

(the case y ∈ B1 and x ∈ B2 is analogous), such that z . x and y . w. We have now two cases.
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(Case 1). If (w,z) ∈. then y . w . z . x. By Condition (4.1) in Proposition 4.1, y . x
implies B2 4 B1, contradicting the hypothesis that B1 and B2 are incomparable.

(Case 2). If (w,z) <. then (w,z) arise in π by transitive closure and there exists a pair
(x′,y′) <., with x′ ∈ B1,y′ ∈ B2 or x′ ∈ B2,y′ ∈ B1, such that w . x′ and y′ . z. Thus, we
have y . w . x′ and y′ . z . x. Again, we make use of the Condition (4.1) in Proposition
4.1. If x′ ∈ B1 and y′ ∈ B2 we obtain B2 4 B1, contradicting the hypothesis that B1 and B2

are incomparable. If x′ ∈ B2 and y′ ∈ B1 we obtain w ∈ B2 and z ∈ B1, contradicting the fact
that (z,w) and (w,z) arise from the transitive closure.

We observe now that . extends . and that . adds to . only couple of pairs (x,y), (y, x)
or pairs obtainable by transitive closure. Thus, the hypothesis of Proposition 4.2 are satisfied
and . is the quasiorder associated to a regular partition of P. Since π is the (set) partition
induced by ., π extends to the regular partition associated to ..

3. Suppose B1 4 B2 and suppose that there exists B3 ∈ π, B3 , B1 , B2, such that B1 4
B3 4 B2. Since π is a regular partition, by Theorem 3.2 we have that for all x ∈ B1, y ∈ B2, z ∈
B3, x .π z .π y (recall that .π denote the blockwise quasiorder induced by π.) By Definition
2.7 we immediately obtain x .π z .π y. Since x and y are in the same block in π, we also
obtain x .π z .π y .π x. Thus, we have x .π z and z .π x. By Corollary 3.4 the partition π
does not extend to a regular partition.

The other side of this statement follows directly by the first and the second statement of
the lemma. �

Lemma 4.2. Let (Π,6Π) be the regular partition lattice of (P,6), and consider the regular
partitions (π1,41), (π2,42) ∈Π. If π1 6Π π2 then every chain of regular partitions π1 =σ1 CΠ
σ2 CΠ · · ·CΠ σk = π2 is such that for all i ∈ {1, . . . ,k−1}, σi+1 is obtained from σi by the union
of two blocks B,C ∈ σi such that one of the following conditions hold.

1. B and C are incomparable in σi.

2. B covers C in σi.

Proof. Consider a regular partition (π = {B1, . . . ,Bk},4) ∈ Π. Suppose that the covering set
of π contains a partition σ such that |σ| ≥ |π|+2. Thus, there exists a block C ∈ σ and a set
of index K ⊆ {1, . . . ,k}, |K| ≥ 2, such that C =

∪
i∈K Bi. We have three cases.

(Case 1). There exist j,h ∈ K such that Bh covers B j in π. By Lemma 4.1 the partition π
obtained from π by the union of B j and Bh extends to a regular partition. Since π 6Π π 6Π σ,
and π , σ, we contradict the fact that σ covers π.

(Case 2). There exist j,h ∈ K such that Bh and B j are incomparable in π. By Lemma
4.1 the partition π obtained from π by the union of B j and Bh extends to a regular partition.
Since π 6Π π 6Π σ, and π , σ, we contradict the fact that σ covers π.

(Case 3). For any j,h ∈ K, Bh and B j are comparable, but not in the covering relation of
π. Say, without loss of generality, B j 4 Bh, and suppose Bm ∈ π is such that Bm , B j , Bh

and B j 4 Bm 4 Bh. Since π is a regular partition, by Theorem 3.2 we have that for all x ∈ B j,
y ∈ Bm, z ∈ Bh, x .π y .π z. By Definition 2.7 we immediately obtain x .σ y .σ z. Since x
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and z are in the same block in σ, we also obtain x .σ y .σ z .σ x. Thus, we have x .σ y and
y.σ x. By Corollary 3.4, since x and y does not belong to the same block of σ, we contradict
the fact that σ is a regular partition.

We have so proved that the covering set of π ∈ Π contains only partitions σ such that
|σ| = |π|+1. By Lemma 4.1, our result follows. �

We are in a position to prove:

Theorem 4.10. The regular partition lattice (Π,6Π) of a poset (P,6) is ranked by the number
of blocks of its elements. Specifically, the rank of an element π ∈ Π is given by |P| − |π|.

Proof. We consider the function r :Π→{0,1, . . .}, defined by r(π)= |P|−|π|. We need to show
that r is a rank function on Π. That is, we need to show that the bottom element of (Π,6Π)
takes value 0 under r, and that if π1,π2 ∈Π are such that π2 covers π1, then r(π2) = r(π1)+1.
The first fact is obvious – just observe that the bottom partition has exactly |P| blocks. The
second fact follows from Lemma 4.2. �

Theorem 4.10 does not hold for the monotone partition lattice, as shown by the following
example.

Example 4.7. We exhibit a poset whose monotone partition lattice is not ranked. Consider
the poset P in Figure 4.9. Figure 4.10 shows all monotone partitions of P. Figure 4.11

Figure 4.9: A poset with an unranked monotone partition lattice.

shows the monotone partition lattice of P. Labels denote the positions of the partitions as
represented in Figure 4.10, counted from left to right, and from top to bottom.

Partition lattices are known to be an important family of geometric lattices. One may
wonder whether Theorem 4.10 can be strengthed to show that regular partition lattices are
geometric.1 In closing this section, we show that it cannot. In fact, the following example
shows that in general they are not even semimodular.

Example 4.8. We consider the poset P in Figure 4.12. Figure 4.13 displays all regular
partitions of P. Figure 4.14 shows the regular partition lattice of P. Labels denote the

1Monotone partition lattices certainly are not geometric in general, as need not be ranked – see Example 4.7.
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Figure 4.10: Monotone partitions which form an unranked lattice.

Figure 4.11: An unranked monotone partition lattice.
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Figure 4.12: A poset with a non-geometric regular partition lattice.

positions of the partitions as represented in Figure 4.13, counted from left to right, and from
top to bottom. We can immediately observe that 4 and 5 cover 4∧5, but 4∨5 does not cover
4 and does not cover 5. Then the regular partition lattice of P is not semimodular. Therefore,
it is not a geometric.

4.5 Bibliographic notes

An extensive analysis of the theory of equivalence relations can be found in [Ore42]. In
particular we refer to this paper for Facts 4.1, 4.2, 4.3. Results on partition lattices can
also be found, e.g, in [Grä98], [BS81], [Sta97]. The characterization of partition lattices
mentioned in this chapter can be found in [Sac61].

Many results are also known about the lattice of quasiorders, and, thanks to Propositions
4.1 and 4.3, almost all of them can be related to our investigation of the lattice of monotone
partitions. Most of these papers are concerned with the duality that we will treat in the next
chapter. Here, it seems appropriate to cite [Ric98], where some important results on lattices
of quasiorders can be found, and [ER95], where the structure of intervals in the lattice of all
quasiorders is analyzed. In none of these papers there appear notions related to the regular
partition lattice.
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Figure 4.13: Regular partitions which form a non-geometric lattice.
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Figure 4.14: A non-geometric regular partition lattice.



Chapter 5
Birkhoff duality

Important ideas come in pairs.

Michael Arbib, Ernest Manes

5.1 Equivalence of categories

We turn our focus on categories, to illustrate a fundamental duality for the category
Poset. In this section, we introduce the notions of equivalence and duality of cate-

gories. They are basic for what follows.

To distinguish objects and morphisms in different categories, we call K-objects the ob-
jects of a category K , and K-morphisms its morphisms. In this section, we consider two
categories K and L.

In Chapter 2 we have introduced the notions of category, objects, morphisms, etc. We
take now a more global viewpoint and consider the categories themselves as structured ob-
jects. The morphisms between categories which preserve their structure are called functors.

Definition 5.1. A functor F from K to L is a correspondence that assigns to each K-object

A an L-object F(A), and to each K-morphism A
f
−→ B an L-morphism F(A)

F( f )
−→ F(B) in

such a way that

(1) F preserves composition, i.e., F( f ◦g) = F( f )◦F(g) whenever f ◦g is defined,

(2) F preserves identities, i.e., F(idA) = idF(A) for each K-object A.

A functor F from K to L will be denoted by F :K →L or K F−→L.

We sometimes make use of the notations FA and F f rather than F(A) and F( f ), and
sometimes denote the action on both objects and morphisms by

F(A
f
−→ B) = FA

F f
−→ FB .

Functors are also called covariant functors. Note that a functor F : K →L is technically a
family of correspondences, one from the class of K-objects to the class of L-objects, and
one from K-morphisms to L-morphisms.
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A special functor is the identity functor idK :K →K , defined by

idK (A
f
−→ B) = A

f
−→ B.

For some categories, there is a notion of forgetful functor. For instance, in Poset a
forgetful functor is defined as the functor U : Poset→ Set, where U(P) is the underlying set
of P, and U( f ) is the underlying function of the order-preserving map f . Thus, U “forgets”
the partial order of a poset.

Each functor F : K → L preserves isomorphism, i.e., whenever A
h−→ A′ is a K-iso-

morphism, then Fh is an L-isomorphism. By contrast, note that functors do not reflect
isomorphisms, meaning that if Fh is an isomorphism, then h needs not to be an isomorphism.
Further observe that the composite G◦F :K →M of the functors F :K →L and G :L→M,
defined by

(G ◦F)(A
f
−→ A′) =G(FA)

G(F f )
−→ G(FA′)

is again a functor.

Definition 5.2. A functor F :K →L is called an isomorphism provided that there is a functor
G : L→K such that G ◦F = idK and F ◦G = idL. If there is an isomorphism F : K →L,
we say that K and L are isomorphic categories.

Isomorphic categories are considered to be essentially the same. In category theory, the
term “equivalent categories” formally refers to a weaker relation then just isomorphism. To
introduce a formal definition of equivalence of categories, we need to define some other
special functors.

Definition 5.3. Let F :K →L be a functor.

(1) F is called an embedding provided that is injective on morphisms.

(2) F is called faithful provided that the restrictions F :K(A,A′)→L(FA,FA′) are injec-
tive, for any two K-objects A,A′.

(3) F is called full provided that all the restrictions F :K(A,A′)→L(FA,FA′) are surjec-
tive, for any two K-objects A,A′.

(4) F is called essentially surjective provided that for any L-object B there exist some
K-object A such that F(A) is isomorphic to B.

Remark 5.1. Note that a functor is an embedding if and only if it is faithful and injective on
objects, and that a functor is an isomorphism if and only if it is full, faithful, and bijective on
objects.

We are now in a position to define equivalence of categories.
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Definition 5.4. A functor F :K →L is called an equivalence provided that it is full, faithful,
and essentially surjective. Categories K and L are called equivalent provided that there is
an equivalence from K to L.

Clearly, each isomorphism between categories is an equivalence. Although for some
categories equivalences coincide with isomorphisms, this is not true in general, and some
categories can be equivalent without being isomorphic. The following fact holds for equiva-
lences.

Fact 5.1. If K F−→ L is an equivalence, then there exists an equivalence L G−→ K . If

K F−→L and L H−→M are equivalences, then so is K H◦F−→M.

The concept of equivalence is especially useful when the concept of duality is involved.
There are numerous cases of pairs of categories where each category is equivalent to the dual
of the other, and this will be our case. We thus need to formalize the notion of duality.

Definition 5.5. For any category K the dual category of K is the category Kop, where
Kop(A,B) =K(B,A) and f ◦op g = g◦ f .

The dual category of K is sometimes called the opposite category of K . We note that
K and Kop have the same objects, while the direction of morphisms is reversed. Because
of the way dual categories are defined, every statement concerning an object A in K can be
translated into a logically equivalent statement concerning the object A in Kop. In the same
way, any property about morphisms gives rise to a dual property about morphisms. For any
category K and property P the following hold.

(1) (Kop)op =K .

(2) Pop(K) holds if and only if P(Kop) holds.

Often the dual concept Pop is denoted by co−P. For instance, limits in K – which we shall
not define here – correspond to colimits inKop. A concept is called self-dual if P = Pop. For
example, the statement “ f is an isomorphism” is self dual, i.e., f is an isomorphism in K if
and only if f is an isomorphism in Kop.

We can now define the notion of dual equivalence.

Definition 5.6. Categories K and L are called dually equivalent provided that Kop and L
are equivalent.

A contravariant functor from K to L is a functor from Kop to L. Thus, K and L are
dually equivalent if and only if there exists a contravariant functor from K to L which is an
equivalence.

In the following example, we illustrate a celebrated duality of categories. Another im-
portant duality, for the category Poset, will be presented in the next section.
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Example 5.1. Set is dually equivalent to the category of complete atomic boolean algebras
and complete Boolean homomorphisms. An equivalence P can be obtained by associating
with each set its power-set, considered as a complete atomic Boolean algebra. If f : A→ B
is a function, then the equivalence P associate with f the morphism P = f ∗ : P(B)→ P(A)
defined by

f ∗(S ) = f −1(S ) ,

for each S ⊆ B. Figure 5.1 depicts the action of the functor P.

Figure 5.1: Duality for the category Set.

5.2 Duality for the category Poset

Let P be a poset, and let O(P) be the collection of all downsets of P. The set O(P) ordered
by inclusion is itself a partially ordered set. In fact, it is immediately seen that O(P) is a
distributive lattice. We call O(P) the dual of P. Let now P,Q be posets, and consider an
order-preserving map f : P→ Q. Let D ∈ O(Q). We observe that f −1(D) ∈ O(P) if and only
if f is order-preserving. We can thus define the map f ∗ : O(Q)→ O(P), by setting, for each
D ∈ O(Q)

f ∗(D) = f −1(D) . (5.1)

We say that f ∗ = O( f ) is the dual map of f . It is possible to show that f ∗ preserve the
structure of bounded distributive lattice.
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Consider now the category DL of (finite, as all the objects studied in this thesis) bounded
distributive lattices and lattice homomorphisms preserving top and bottom. The map O is
a functor from Poset to DLop. Moreover, one can check that O preserves composition and
identities, and that O is faithful, full, and essentially surjective. Thus, O is an equivalence,
and the categories Poset and DL are dually equivalent.

Example 5.2. Figure 5.2 shows the image of an order-preserving map f : P→ Q via O.
The morphism f from the poset P to the poset Q is shown in the top half of the picture. In
the bottom half, one can see the dual of f , that is the DL-morphism f ∗ from the distributive
lattice O(Q) to the distributive lattice O(P).

Figure 5.2: Duality between Poset and DL via O.

By Fact 5.1, there exists an equivalence from DL to Posetop. We present here two such
equivalences. To introduce the first one, we need some more definitions.

Definition 5.7. Let L be a lattice. A nonempty subset G ⊆ L is called a filter if

(i) x,y ∈G imply x∧ y ∈G,

(ii) x ∈ L, y ∈G and y 6 x imply x ∈G.

A filter is called proper if it does not coincide with L.

We observe that given a lattice L and an element x ∈ L, the set ↑ x = {y ∈ L | x 6 y} is a
filter. We call ↑ x the principal filter generated by x. It is possible to verify that in a finite
lattice every filter is principal.
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Definition 5.8. Let L be a lattice, and G ⊆ L a proper filter of L. Then G is said to be prime
if x,y ∈ L and x∨ y ∈G imply x ∈G or y ∈G.

We define now the functor Spec which associates with a distributive lattice the poset of
its prime filters, ordered by reverse inclusion. It is possible to check that if D is a distribu-
tive lattice, then O(Spec(D)) is isomorphic to D, and if P is a poset, then Spec(O(P)) is
isomorphic to P.

Example 5.3. Consider the distributive lattice L in Figure 5.3(1). The proper filters of L are
G1 = {b,c,d,e}, G2 = {c,e}, G3 = {d,e}, G4 = {e}. One can check that G1, G2, G3 are primes,
while G4 is not, because c∨d ∈G4, but none of c, d is in G4. Figure 5.3(2) shows the poset
Spec(L), that is the poset of the prime filters G1, G2, G3 ordered by reverse inclusion. Figure
5.3(3) shows the distributive lattice O(Spec(L)), that is the lattice of all downsets of Spec(L)
ordered by inclusion. We immediately note that O(Spec(L)) is isomorphic to L.

Figure 5.3: Example 5.3.

Let L,M be bounded distributive lattices, and f : L → M be a morphism of DL. We
observe that, for each G ∈ Spec(M), f −1(G) ∈ Spec(L). Then, we can define the dual map
f ∗ = Spec( f ) : Spec(M)→ Spec(L), by setting, for all G ∈ Spec(M)

f ∗(G) = f −1(G). (5.2)

One can verify that if G,H ∈ Spec(M) and G ⊇ H, then f −1(G) ⊇ f −1(H). Thus f ∗ is an
order-preserving map from Spec(M) to Spec(L). Furthermore, it is possible to prove that
Spec is a functor from DL to Posetop, and that it is an equivalence.

Alternatively to Spec, we can describe the equivalence between DL and Posetop in a
different manner, via the functor J. To this end, we first define the join irreducible elements
of a lattice L to be the elements x ∈ L, x , ⊥, such that y∨ z = x always imply x = y or x = z.

For a distributive lattice L we define J(L) to be the poset of the join irreducible elements
of L, ordered by the restriction of the order of L. The following important fact is easily
verified.

Fact 5.2. Let L be a distributive lattice. Then x is a join irreducible element of L if and only
if ↑ x is a prime filter. Moreover, J(L) is isomorphic to Spec(L) via the map ϕ : x 7→↑ x.
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It turns out that any bounded distributive lattice L is isomorphic to O(J(L)) and, for any
poset P, P � J(O(P)).

Consider now two bounded distributive lattices L and M, and let J(L) = P and J(M) = Q.
Let f : L→ M be a DL-morphism. We define f ∗ = J( f ) to be the order-preserving map from
Q to P defined by

f ∗(y) =min{x ∈ P | y ∈ ↓ f (x)} , (5.3)

for all y ∈ Q. We have so defined the action of the functor J both on objects and morphisms.
It is not difficult to verify now that J is an equivalence from DL to Posetop.

By introducing the functors O and J (or, equivalently, Spec), we have described the
dual equivalence between the categories DL and Poset. This duality may be called Birkhoff
duality for distributive lattices, cf. the bibliographic notes to this chapter.

The following example illustrates the action of the functor J on objects and morphisms.
Compare 5.2.

Example 5.4. The top half of Figure 5.4 shows a morphism f between the bounded dis-
tributive lattices L and M. In the bottom half of the same figure we show the dual objects
via J, that is the posets P = J(L) and Q = J(M), and the dual morphism f ∗ = J( f ), that is the
order-preserving map f ∗ : Q→ P. Consider, for instance, the element x ∈ Q. By the defini-
tion of dual map – see (5.3) – f ∗(x) = min{y ∈ P | x ∈ ↓ f (y)}. We note that ↓ f (a) = {u,y},
↓ f (b) = {u,y,z}, ↓ f (c) = {u, x,y,w}, ↓ f (d) = {u, x,y,z,w,v}, and obtain f ∗(x) = c.

Figure 5.4: Duality between Poset and DL via J.
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The duality between DL and Poset suggest a new research direction. By investigating
particular properties of the category Poset, we can now obtain dual results for the category
DL. In particular, in the next sections we make use of the following important fact which
allows us to translate the notions of monotone and regular partition into the corresponding
notions for distributive lattices.

Fact 5.3. Let P and Q be posets, and let L = O(P) and M = O(Q). Consider the order-
preserving map f : P→ Q, and the map f ∗ = O( f ) from M to L.

1. If f is epi, then f ∗ is mono.

2. If f is regular epi, then f ∗ is regular mono.

A categorical proof of this fact – meaning a proof using arrows – is not difficult. We

sketch the argument for the first case. Consider an epimorphism P
f
−→ Q of Poset. By

Definition 2.1, for all pairs h,k : Q→ R of morphisms of Poset such that h ◦ f = k ◦ f , we
have h = k – see the diagram in Figure 5.5.

Figure 5.5: An epimorphism of Poset.

We can translate this definition in terms of the dual category DL, using the fact that
the functor O is in equivalence. We obtain that for all pairs O(h),O(k) : O(R)→ O(Q) of
morphisms of DL such that O( f )◦O(h) =O( f )◦O(k), we have O(h) =O(k) – see the diagram
in Figure 5.6. Thus, by Definition 2.1, O( f ) is a monomorphism of DL.

Figure 5.6: The dual of an epimorphism of Poset.

To continue our work, we also need to reformulate the definition of {0,1}-sublattice used
in the previous chapter.

Definition 5.9. Let L be an object of DL. We call S a {0,1}-sublattice of L if S is the range of
a DL-monomorphism f : M→ L. If f is a regular monomorphism, we say that S is a regular
{0,1}-sublattice of L.

It is well known that the set of all {0,1}-sublattices of a lattice L, indicated by Sub01(L),
forms a lattice.
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5.3 Duals of monotone partitions

We indicate by Πm(P) the set of all monotone partitions of a poset P. As shown in Chapter
4, Πm(P) forms a lattice. The following result establishes a correspondence between the set
Πm(P) and the set of all {0,1}-sublattices of the lattice L that is dual to P via the functor O.

Lemma 5.1. There is a bijection between the set Πm(P) of all monotone partitions of a poset
P and the set Sub01(L) of all {0,1}-sublattices of the distributive lattice L = O(P).

Specifically, a bijection is obtained by associating with each π ∈ Πm(P), induced by a

Poset-epimorphism P
f
−→ Q, the {0,1}-sublattice of O(P) which is the range of the DL-

monomorphism O(Q)
O( f )
−→ O(P).

Proof. Let P be a poset, and let (π,4) be a monotone partition of P. Consider an epimor-
phism f : P→ Q which induces the partition π according to Definition 3.3. Then, by Fact
5.3, f ∗ = O( f ) is a monomorphism from O(Q) to O(P). By Definition 5.9, the range of f ∗

is a {0,1}-sublattice of the distributive lattice O(P). We now observe that an epimorphism
g : P → Q′ yields the same monotone partition (π,4) induced by f : P → Q if and only
if there exists an isomorphism h : Q→ Q′ which makes the diagram in Figure 5.7 com-
mute. Thus, by duality, f and g induce the same monotone partition of P if and only if, for

Figure 5.7: Lemma 5.1 – monotone partition.

g∗ = O(g) : O(Q′)→ O(P), there exists an isomorphism h∗ = O(h) : O(Q′)→ O(Q) which
makes the diagram in Figure 5.8 commute, if and only if g∗ yields the same {0,1}-sublattice
of O(P) induced by f ∗. From this observation, and the fact that O is a dual equivalence, and
hence faithful, full, and essentially surjective, we obtain our statement. �

We give an explicit example of the bijection provided by Lemma 5.1.

Example 5.5. Figure 5.9 shows an epimorphism f from a poset P to a poset Q. The par-
tition (π,4) induced by f is depicted in the same figure, on the right. The dual of f via
O is the monomorphism f ∗ between the bounded distributive lattices O(Q) and O(P). The
monomorphism f ∗ induces a {0,1}-sublattice S ⊆O(P). Both f ∗ and S are depicted in Figure
5.10.
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Figure 5.8: Lemma 5.1 – {0,1}-sublattice.

Figure 5.9: A partition π induced by an epimorphism f .

Figure 5.10: A sublattice S which is range of a monomorphism f ∗.

We can define a lattice isomorphism ϕ which associates with the bounded distributive
lattice O(π) = {D1, . . . ,Dk} the lattice ϕ(O(π)) = {D1, . . . ,Dk}, where1 Di = {x ∈ E | E ∈ Di} ,
and Di 6 D j in ϕ(O(π)) if and only if Di 6 D j in O(π), for all Di,D j ∈ O(π). We observe that
ϕ(O(π)) = S , as shown in Figure 5.11. One can verify that this fact holds in general, that is,
for any poset P, ϕ◦O is a bijection between Πm(P) and Sub01(O(P)).

1Note that the elements of Di are blocks of a partition, and thus sets.
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Figure 5.11: A sublattice S dual to a partition π.

In order to prove the main result of this section, one more lemma is needed.

Lemma 5.2. Let P be a poset, and let π,π′ ∈ Πm(P). Let f : P→ Q and g : P→ Q′ be
Poset-epimorphisms which induce π and π′, respectively. Then π 6 π′ in Πm(P) if and only
if there exists a Poset-epimorphism e : Q→ Q′ such that e◦ f = g.

Proof. By Proposition 4.3, π 6 π′ if and only if the quasiorder . corresponding to π is set-
theoretically included in the quasiorder .′ corresponding to π′. Let us consider π,π′ ∈Πm(P)
induced by the epimorphisms f : P→ Q and g : P→ Q′, respectively.

Suppose π 6 π′. We define a map e : Q→ Q′ by setting for each x ∈ Q, e(x) = g( f −1(x)).
Since f is epi, for all x ∈ Q we have f −1(x) , ∅. Let B = f −1(x). If p,q ∈ B, then p . q and
q . p. Since .⊆.′ we also have p .′ q and q .′ p and thus g(x) = g(y). Therefore e actually
is a function from Q to Q′. Moreover, e is surjective, for else we would have for some x ∈Q′,
e−1(x) = ∅, but there exists p ∈ P such that x = g(p) , e( f (p)).

Let now x,y ∈ Q, with x 6 y. For all p ∈ f −1(x) and for all q ∈ f −1(y), we have p . q.
Thus, we also have p .′ q, and g(p) = e(x) 6 g(q) = e(y). Therefore, e is order-preserving
and thus an epimorphism.

Suppose now that there exists a Poset-epimorphism e : Q→ Q′ such that e◦ f = g, with
the aim of proving π 6 π′. Let p,q ∈ P be such that p . q. By Condition (4.1) in Proposition
4.1 we have f (p) 6 f (q), and thus e( f (p)) = g(p) 6 e( f (q)) = g(q). Using again Proposition
4.1 we obtain p .′ q. Hence, .⊆.′ and, by Proposition 4.3, π 6 π′. �

For what sublattices are concerned, the order can be given in term of monomorphisms,
as the following easy fact states.

Fact 5.4. Let L be a bounded distributive lattice, and let S ,S ′ ∈ Sub01(L). Let f : M → L
and g : M′ → L be DL-monomorphisms having ranges S and S ′, respectively. Then S ′ 6 S
in Sub01(L) if and only if there exists a DL-monomorphism m : M′→ M such that f ◦m = g.

Given two lattices L and M, we say that L is anti-isomorphic to M, written L
a
� M,

whenever the lattice L is isomorphic to the lattice obtained from M by reversing its order.
The following theorem extends the result obtained in Lemma 5.1.
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Theorem 5.1. The monotone partition lattice of a poset P is anti-isomorphic to the lattice
of all {0,1}-sublattices of the distributive lattice L = O(P), ordered by inclusion. In symbols,
Πm(P)

a
� Sub01(L).

Proof. Let P be a poset, and let π and π′ be monotone partitions of P induced by the Poset-
epimorphisms f : P→ Q and g : P→ Q′, respectively. Let S and S ′ be the {0,1}-sublattices
of L =O(P) which are ranges of the DL-monomorphisms f ∗ : O(Q)→O(P) and g∗ : O(Q′)→
O(P), respectively. By Lemma 5.2, π 6 π′ if and only if there exists a Poset-epimorphism
e : Q→ Q′ such that e◦ f = g. By duality, e◦ f = g if and only if f ∗ ◦m = g∗, with m = O(e),
and, by Fact 5.4, this is equivalent to saying that S ′ is a {0,1}-sublattice of S , that is S ′ 6
S . �

Example 5.6. Example 4.7 exhibits all the monotone partitions of a poset P, and their lat-
tice structure. In Figure 5.12 we recall these results, showing the poset P together with
its monotone partition lattice Πm(P). In Example 5.5 we have described the lattice O(P),

Figure 5.12: Monotone partition lattice.

dual to P. Figure 5.13 shows the sublattices of O(P). Finally, Figure 5.14 shows the lattice
Sub01(O(P))

a
� Πm(P).

A very extensive body of literature is concerned with Birkhoff duality and its extensions.
A part of this literature deals with the lattice of sublattices of distributive lattices, both for the
finite and infinite case. We give a brief description of these latter results in the bibliographic
notes, at the end of this chapter.

5.4 Duals of regular partitions

The results obtained in the previous section for monotone partition lattices can be adapted in
order to obtain analogous results for regular partition lattices. We do not give proofs in this
section, because they are straightforward translations of the proofs given for the correspond-
ing results in Section 5.3. Essentially, it suffices to substitute the term monotone with the
term regular, and the notion of {0,1}-sublattice with that of regular {0,1}-sublattice. Given
a poset P, we indicate by Πr(P) the regular partition lattice of P. We indicate by Subr(L) the
set of all regular {0,1}-sublattices of a bounded distributive lattice L.
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Figure 5.13: {0,1}-sublattices of a bounded distributive lattice.

Figure 5.14: Lattice of sublattices of a bounded distributive lattice.

Lemma 5.3. There is a bijection between the set Πr(P) of all regular partitions of a poset P
and the set Subr(L) of all regular {0,1}-sublattices of the distributive lattice L = O(P).

Specifically, a bijection is obtained by associating with each π ∈ Πr(P), induced by a

regular Poset-epimorphism P
f
−→Q, the regular {0,1}-sublattice of O(P) which is the range

of the regular DL-monomorphism O(Q)
O( f )
−→ O(P).

The following lemma expresses the order between regular partitions in terms of the cor-
responding regular epimorphisms.
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Lemma 5.4. Let P be a poset, and let π,π′ ∈Πr(P). Let f : P→ Q and g : P→ Q′ be regular
Poset-epimorphisms which induce π and π′, respectively. Then π 6 π′ in Πr(P) if and only
if there exists a regular Poset-epimorphism e : Q→ Q′ such that e◦ f = g.

For what concern regular sublattices the order can be given in terms of regular monomor-
phisms, as follows.

Fact 5.5. Let L be a bounded distributive lattice, and let S ,S ′ ∈ Subr(L). Let f : M → L
and g : M′→ L be regular DL-monomorphisms having ranges S and S ′, respectively. Then
S ′ 6 S in Subr(L) if and only if there exists a regular DL-monomorphism m : M′→ M such
that f ◦m = g.

The following theorem establishes the desired correspondence between the regular par-
tition lattice of a poset P and the lattice of regular {0,1}-sublattices of the distributive lattice
dual to P.

Theorem 5.2. The regular partition lattice of a poset P is anti-isomorphic to the lattice of
all regular {0,1}-sublattices of the distributive lattice L = O(P), ordered by inclusion. In
symbols, Πr(P)

a
� Subr(L).

Example 5.7. Consider the poset P and the distributive lattice O(P) depicted in Figure 5.15.
The regular sublattices of O(P), shown in Figure 5.16, are the duals of the regular partitions

Figure 5.15: A poset P and its dual O(P).

of P shown in Figure 4.13 – see the construction of the dual of a partition in Example 5.5.
Comparing the lattice Subr(O(P)) depicted in Figure 5.17 with the lattice Πr(P) shown in
Figure 4.14, we see that Πr(P)

a
� Subr(O(P)).

5.5 Characterization of regular sublattices

The aim of this section is to give a characterization of regular sublattices. To this end, we
will translate the characterization of a regular partition of a poset, given in Chapter 3, in the
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Figure 5.16: Regular {0,1}-sublattices of a bounded distributive lattice.

Figure 5.17: Lattice of regular sublattices of a bounded distributive lattice.

dual category DL. We first show how to relate join-irreducible elements of a sublattice with
blocks of the dual partition.

Let P be a poset, and let (π,4) be a monotone partition of P. Consider the distributive
lattice L = O(P), and the {0,1}-sublattice M ⊆ L dual to π, that is, the sublattice of L associ-
ated with π by O according to Lemma 5.1. By the definition of the functor J, we can think
of the poset P as the poset of join-irreducible elements of L. Consequently, the set partition
π = {B1, . . . ,Bk} can be easily associated with a partition of the set J(L). The next definition,
as will be shown in Lemma 5.5 below, describes the blocks of such a partition.

Notation. If L is a bounded distributive lattice, and M ⊆ L a {0,1}-sublattice of L, we de-
note by πM the dual of the sublattice M, that is, the monotone partition of the poset J(L)
corresponding to the sublattice M according to Lemma 5.1.

Definition 5.10. Let L be a bounded distributive lattice, and M ⊆ L a sublattice of L. Fix
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m ∈ J(M). We call the block of m the subset Bm ⊆ J(L) defined by

Bm = (↓ m∩J(L)) \ ↓ ((J(M)∩ ↓ m) \ {m}) , (5.4)

where ↓ denotes downsets in the lattice L.

The next example should clarify this definition.

Example 5.8. Consider the distributive lattice L and the {0,1}-sublattice M ⊆ L depicted in
Figure 5.18.

Figure 5.18: Example 5.8.

We observe that J(L) = {l2, l3, l4, l8, l10} and J(M) = {l4, l10, l13}. Consider the element l10 ∈
J(M). By Definition 5.10 we have

Bl10 = (↓ l10∩{l2, l3, l4, l8, l10}) \ ↓ (({l4, l10, l13}∩ ↓ l10) \ {l10}) =
= ({l1, l3, l4, l7, l10}∩ {l2, l3, l4, l8, l10}) \ ↓ (({l4, l10, l13}∩ {l1, l3, l4, l7, l10}) \ {l10}) =
= {l3, l4, l10} \ ↓ ({l4, l10} \ {l10}) = {l3, l4, l10} \ ↓ l4 = {l3, l4, l10} \ {l1, l4} = {l3, l10} .

In the same way we can obtain Bl4 = {l4}, and Bl13 = {l2, l8}. Note that the set {Bl4 ,Bl10 ,Bl13 }
is a partition of J(L).

Lemma 5.5. Let L be a bounded distributive lattice, let M ⊆ L be a {0,1}-sublattice of L,
and let J(M) = {m1, . . . ,mk}. Then

πM = {Bm1 , . . . ,Bmk } ,

where Bmi is the block of mi.

Proof. Let f : M → L be the canonical embedding of M into L, that is the map from M
to L such that for all x ∈ M, f (x) = x. By the definition of J the dual of f is the map
f ∗ : J(L)→ J(M) defined by

f ∗(y) =min{x ∈ J(M) | y ∈↓ f (x)} ,

for all y ∈ J(L) – see (5.3). The map f ∗ is an order-preserving surjection from J(L) to
J(M). We claim that the fibres of f ∗ are exactly Bm1 , . . . ,Bmk . To be more precise, we
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claim that for all m ∈ J(M), Bm = ( f ∗)−1(m). Consider an element z ∈ J(L). We observe that
z ∈ ( f ∗)−1(m) if and only if m = min{x ∈ J(M) | z ∈↓ f (x)} = min{x ∈ J(M) | z ∈↓ x}. Thus,
( f ∗)−1(m) is the set of all elements z ∈ J(L)∩ ↓m such that there is no m′ ∈ J(M), with m′ <m,
such that z ∈↓ (m′ ∩ J(L)). Noting that the set of all m′ ∈ J(M) such that m′ < m is the set
(J(M)∩ ↓ m) \ {m}, we can write ( f ∗)−1(m) = (J(L)∩ ↓ m) \ (↓ ((J(M)∩ ↓ m) \ {m})∩ J(L)) =
(J(L)∩ ↓ m)\ ↓ ((J(M)∩ ↓ m) \ {m}) = Bm. By Lemma 5.1, πM = {( f ∗)−1(m) | m ∈ J(M)} =
{Bm1 , . . . ,Bmk }, as desired. �

Consider now a distributive lattice L and a {0,1}-sublattice M ⊆ L. Lemma 5.5 says that
if J(M) = {m1, . . . ,mk}, then {Bm1 , . . . ,Bmk } is the underlying set of a monotone partition of
the poset J(L). Since each join-irreducible element of the sublattice M represents a block
of this partition, the order between blocks can be recovered by looking at the order of the
corresponding join-irreducible elements of M. By such considerations, it is not difficult
to translate the condition in Theorem 3.2, where a characterization of regular partitions is
given, into a corresponding condition on the lattice L. The following corollary provides a
first characterization of regular sublattices along these lines.

Corollary 5.3. Let L be a bounded distributive lattice, let M ⊆ L be a {0,1}-sublattice of L,
and let J(M) = {m1, . . . ,mk}. Consider the poset (π,4), where π = {Bm1 , . . . ,Bmk }, and where
4 is a partial order on π defined by

mi 6 m j if and only if Bmi 4 Bm j , (5.5)

for all i, j ∈ {1, . . . ,k}. Then, M is a regular {0,1}-sublattice of L if and only if for all i, j ∈
{1, . . . ,k} and for all x ∈ Bmi , y ∈ Bm j the following condition holds.

Bmi 4 Bm j if and only if x .π y , (5.6)

where .π is the blockwise quasiorder induced by π on J(L).

Proof. By Lemma 5.5, π = {Bm1 , . . . ,Bmk } is the monotone partition of J(L) dual to M. By
duality (Fact 5.3 and Definition 5.9), M is a regular sublattice of L if and only if π is a regular
partition of J(L). Thus, by Theorem 3.2, π is a regular sublattice of L if and only Condition
(5.6) holds. �

Example 5.9. Consider the lattice L and its sublattice M ⊆ L, depicted in Figure 5.18. Ex-
ample 5.8 shows that M induces on J(L) the partition π = {Bl4 ,Bl10 ,Bl13 }, where Bl4 = {l4},
Bl10 = {l3, l10}, and Bl13 = {l2, l8}. Using Condition (5.5) in Corollary 5.3 we define an order
on π, obtaining

Bl4 4 Bl10 4 Bl13 .

Since l4 .π l3 .π l2, Condition (5.6) in Corollary 5.3 is satisfied. Thus, M is a regular {0,1}-
sublattice of L.

Consider now the lattice L′ and its sublattice M′, depicted in Figure 5.19. We have
J(L′) = {b,c,d} and J(M′) = {c, f }. By Lemma 5.5, M′ induces on J(L′) the partition π′ =
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{Bc,B f }, where Bc = {c} and B f = {b,d}. Using Condition (5.5) in Corollary 5.3 we define on
π′ a partial order, obtaining Bc 4 B f , because c 6 f . Since Bc 4 B f , but c  π′ b, by Corollary
5.3 M′ is not a regular sublattice of L′.

Figure 5.19: Example 5.9.

Corollary 5.3 gives a first characterization of the regular partition lattices. A more alge-
braic characterization is given by the following theorem.

Theorem 5.4. Let L be a bounded distributive lattice, and let M ⊆ L be a {0,1}-sublattice of
L. Let [M] be the class of all sublattices M′ ⊆ L such that πM = πM′ . Then M is a regular
sublattice of L if and only if ∨

[M] = M ,

where the join is computed in Sub01(L) – that is, M is the sublattice of L generated by [M].

Proof. Consider the monotone partitions (πM ,4) and (πM′ ,4′) of J(L), and suppose πM =

πM′ . Recall that, by Proposition 4.3, the lattice Πm(J(L)) is ordered by set-theoretical inclu-
sion between the quasiorders corresponding to each monotone partition. By Theorems 3.1
and 3.2, we infer that if πM is regular, then πM 6 πM′ . Thus, if we denote by [πM] the class
of all monotone partitions having the same underlying set as πM , we have that

πM is a regular partition if and only if πM =
∧

[πM] ,

where the meet is computed in Πm(J(L)). By Theorem 5.1, the lattice Sub01(L) is anti-
isomorphic to Πm(J(L)). Then, it follows that M is a regular sublattice of L if and only if∨

[M] = M, where the join is computed in Sub01(L). �

This is not a conclusive result for what concerns the characterization of regular sublat-
tices. An intrinsic algebraic characterization of this class which does not mention the con-
struction of the dual partition should be feasible. Such a characterization is left for further
work.

5.6 Bibliographic notes

The notions concerning categories used in this chapter can be found in almost every book on
category theory. We cite, for instance, [HS73], [AHS04], [AM75], [Man76], [ML98].
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As a general reference for the duality between distributive lattices and posets (with exten-
sions to the infinite case) we mention [DP02] and [Pri84]. In this chapter we have referred to
the finite case of this duality as Birkhoff duality, after [Bir40]. The general case is sometimes
called, depending on the context, Priestley duality, Stone duality, or Stone-Priestley duality.

The literature concerned with this duality is vast. Here, we only mention some papers
that are more closely related to our work.

In [CLP91], R. Cignoli, S. Lafalce and A. Petrovich present a systematic account of
relations on compact totally order-disconnected spaces (Priestley spaces) and a variety of
applications. They set up a duality for bounded distributive lattices with 0-preserving and
join-preserving maps. They also establish a duality between {0,1}-sublattices of a bounded
distributive lattice L and suitable preorder relations of the Priestley space of L. This can be
considered as a more general framework within which the present thesis fits.

In [ADS96], the authors use Birkhoff duality to investigate maximal sublattices of finite
bounded distributive lattices. They use quotients instead of monotone partitions and study
the set of all atoms of the lattice Q(P) of quotients. Via Birkhoff duality, Q(P) is dually
isomorphic to the lattice of sublattices of L = O(P). The set of all atoms of Q(P) thus
corresponds to the set of maximal proper sublattices of L. Amongs other results, some
arithmetical properties concerning the number and size of maximal proper sublattices of a
finite distributive lattice are obtained.

In [Sch99] and [Sch02] J. Schmid continues the study of the lattices of all sublattices of
a finite bounded distributive lattice. In the first paper the author discusses, with the aid of
Birkhoff duality, the remainder R = L \M, of the finite distributive lattice L, where M is a
maximal sublattice of L. In [Sch02] a new tool for the investigation of {0,1}-sublattices of a
bounded distributive lattice is presented. This idea replaces a partial order in the definition
of a Priestley space with a compatible quasiorder. As a consequence new proofs of represen-
tations of different sublattices are derived. The author investigates special sublattices, such
as epic, Frattini and maximal sublattices.

In [Ada73] M. E. Adams considers the Frattini sublattice Φ(L) of a lattice L and proves,
among other things, that if L is a distributive lattice then there exists a distributive lattice L1

such that L is isomorphic to Φ(L1). Again, the methods are based on Priestley duality. In
[AA94] distributive lattices which are the Frattini sublattices of finite distributive lattices are
characterized by means of a property of the ordered set of all join-irreducible elements.

The lattice of all sublattices of a distributive lattice is also investegated, for instance, in
[Riv73] and [Riv74]. Its dual, that is the monotone partition lattice of a poset (or, equiva-
lently, the lattice of quasiorders on a set, or a particular lattice of topologies) are studied, for
instance, in [ER95], [ER96], [Ric98].



Chapter 6
Counting problems

Si sta come, d’autunno, sugli alberi, le foglie.

Giuseppe Ungaretti

6.1 Monotone and regular partitions of antichains

This last chapter is devoted to some counting problems arising from the theory devel-
oped in this thesis. We do not tackle general enumerative problems, but simply intro-

duce some cases to suggest that this field of research might be vast and possibly difficult.
References on this topic are given in the bibliographic notes at the end of the chapter.

We begin with the simplest case of all, that is the enumeration of monotone and regular
partitions of antichains. We consider an antichain An with n > 0 elements, with the aim of
counting the number of its monotone and regular partitions.

Any quasiorder on the elements of An must extend the partial order of An, because the lat-
ter is just the identity relation on An. Therefore, by Proposition 4.1, the number of monotone
partitions of An equals the number of quasiorders on n elements. We indicate this number by
Qn. There is no known explicit formula for Qn. In the following table we display the value
of Qn, for n 6 8.

n 0 1 2 3 4 5 6 7 8
Qn 1 1 4 29 355 6942 209527 9535241 642779354

We note that the collection of all quasiorders on n elements can be obtained by parti-
tioning the n elements in all possible ways, and then defining in all possible ways a partial
order between the blocks of each partition. We can thus derive the following formula for Qn,
which, clearly, does not simplify the problem of computing its values:

Qn =

n∑
k=1

S (n,k)Pk .

Here, S (n,k) counts the number of partitions of a set of n elements into k blocks, and is
called the Stirling number of the second kind, while Pk is the number of partial orders on n
elements. As for Qn, there seems to be no explicit formulas to compute Pn. The values of
Pn for n 6 8 are given by the following table.
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n 0 1 2 3 4 5 6 7 8
Pn 1 1 3 19 219 4231 130023 6129859 431723379

Example 6.1. Figure 6.1 shows all monotone partitions of the antichain A2 = {x,y}.

Figure 6.1: Monotone partitions of A2.

Figure 6.2 shows the lattice of monotone partitions of A2, that is, the lattice of quasiorders
on 2 elements.

Figure 6.2: Monotone partition lattice of A2.

To compute the number of regular partitions of an antichain with n points, we use Corol-
lary 3.4. We immediately observe that the condition in this corollary is satisfied by every
(set) partition of an antichain, that is, every partition of an antichain An admits an extension
to a regular partition of An. Since this extension is unique, the number of regular partitions
of An equals the number of partitions of a set with n elements. This number is known as the
n-th Bell number, and denoted by Bn. By the definition of Stirling numbers of the second
kind, we have

Bn =

n∑
k=0

S (n,k) .

The following table shows the values of Bn for n 6 10.

n 0 1 2 3 4 5 6 7 8 9 10
Bn 1 1 2 5 15 52 203 877 4140 21147 115975

Remark 6.1. By the latter considerations, it is clear that Πr(An) is isomorphic to the partition
lattice Πn.

Example 6.2. Figure 6.3 shows the regular partition lattices of antichains with 1 6 n 6 4
points, that is the lattices of partitions of a set with n elements.
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Figure 6.3: Regular partitions of antichains.

6.2 Monotone and regular partitions of chains

The second case we deal with is the enumeration of monotone and regular partitions of
chains. We indicate by Cn a chain with n elements.

Proposition 6.1. Let π be a (set) partition of a chain Cn. Then π admits an extension to a
regular partition of Cn if and only if each block B ∈ π is an interval, i.e. there exist x,y ∈ Cn

such that
B = [x,y] = {z ∈Cn | x 6 z 6 y } .

Proof. Let π be a partition of a chain Cn.

(⇐) Suppose π is a partition of Cn into intervals. One can immediately see that x .π y
and y .π x if and only if x and y belong to the same block of π. By Corollary 3.4, π admits
an extension to a regular partition of Cn.

(⇒) Suppose now that there exists a block B ∈ π which is not an interval. Thus, there
exist x 6 z 6 y, with x,y ∈ B and z < B. We thus obtain x .π z .π y .π x, with x and z not
belonging to the same block. By Corollary 3.4, π does not admit an extension to a regular
partition of Cn. �

By Corollary 3.4, if a partition π admits an extension to a regular partition, this extension
is unique. Thus, by Proposition 6.1, enumerating regular partitions of a chain Cn is equiv-
alent to enumerating partitions of Cn into intervals. It is possible to establish a bijection
between such partitions and the compositions, also called ordered partitions, of n, that is the
expressions of n as ordered sums of positive integers. It is easy to check the well-known fact
that the number of ordered partitions of n is 2n−1. Thus, the number of regular partitions of
Cn also equals the number of subsets of a set with n− 1 elements. In fact, one can identify
a partition of Cn into intervals with a subset of edges (i.e. pairs (x,y) of elements such that y
covers x) of Cn, as shown in the following example.

Example 6.3. Consider the chain C4 – see Figure 6.4 – and choose a subset of its edges,
S = {(a,b), (b,c)}, say. Then, S defines a partition π= {B1,B2,B3}, where B1 = {x ∈Cn | x6 a},
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B2 = {x ∈Cn | b 6 x 6 b}, B3 = {x ∈Cn | c 6 x}. As shown in Figure 6.4, π is a partition of Cn

into intervals.

Figure 6.4: Regular partition of a chain.

Remark 6.2. By the latter considerations, we obtain that the lattice Πr(Cn) is isomorphic to
the lattice Bn−1 of subsets of a set with n−1 elements, ordered by inclusion, called a Boolean
lattice.

Example 6.4. Figure 6.5 shows the lattices Πr(Cn) �Bn−1 for n = 1,2,3,4.

Figure 6.5: Regular partition lattices of chains.

Consider now a chain Cn and a regular partition (π = {B1, . . . ,Bk},4) of Cn. By Theorem
3.2, if Bi 4 B j, for i, j ∈ {1, . . . ,k}, then x .π y, for any x ∈ Bi and y ∈ B j. Since π is a partition
of Cn into intervals, x .π y if and only if x 6 y or Bi = B j. Thus, for a chain Cn, Condition
(3.2) in Theorem 3.2 coincide with Condition (3.1) in Theorem 3.1. We obtain that, for
chains, monotone partitions and regular partitions coincide:

Πm(Cn) = Πr(Cn) .

From the results obtained in this section and in the previous one, we can easily derive
the following proposition, which provides bounds for the number of regular and monotone
partitions of any poset.
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Proposition 6.2. Let P be a poset with n elements. Then

2n−1 6 |Πr(P)| 6 Bn ,

2n−1 6 |Πm(P)| 6 Qn .

Proof. The inequalities for the monotone partition lattice are immediately obtained, by
Proposition 4.1, using quasiorders. The inequality |Πr(P)| 6 Bn follows directly from Corol-
lary 3.4. Consider now a poset P and a partition π of its underlying set. Extend the order
of P to a total order, obtaining a chain Cn. Thus, x .π y in P always implies x .π y in Cn.
By Corollary 3.4, whenever π admits an extension to a regular partition of Cn, it admits
an extension to a regular partition of P. Since |Πr(Cn)| = 2n−1, the remaining inequality is
proved. �

6.3 Monotone and regular partitions of linear sums

In this section we provide a method to count monotone and regular partitions of some posets
which are obtained through linear sums.

Definition 6.1. Let P and Q be posets. The linear sum P⊕Q is the poset P∪Q, with the
order defined by

x 6 y if and only if x,y ∈ P and x 6 y in P, or x,y ∈ Q and x 6 y in Q, or x ∈ P,y ∈ Q.

The Hasse diagram of a poset P⊕Q is obtained by placing the diagram of P directly
below the diagram of Q, and then by adding a line segment from each maximal element of
P to each minimal element of Q, as shown in Figure 6.6. Observe that, while the linear sum
is not commutative, it is associative.

Figure 6.6: Linear sum of posets.
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Example 6.5. An interesting example of posets obtainable by linear sum is the family of
posets Ti = A1 ⊕ Ai, that we call bushes. Note that bushes are just trees of height 1. In
analogy with our analysis of antichains in Section 6.1, we observe that all partitions of the
underlying set of a bush Ti admit an extension to a regular partition of Ti. Since Ti has i+1
elements, we have, for i = 1,2, . . .,

Πr(Ti) � Πr(Ai+1) � Πi+1 .

We recall a well-known notion.

Definition 6.2. Let P and Q be posets. The cartesian product of P and Q is the poset

P×Q = {(x,y)|x ∈ P,y ∈ Q} .

The order on P×Q is defined by

(x,y) 6 (w,z) if and only if x 6 y in P and y 6 z in Q .

The following proposition provides the promised method to count monotone and regular
partitions of linear sums of some special posets. This method also applies to the chains
studied in Section 6.2 in an obvious manner.

Proposition 6.3. Let P be a poset with top and Q be a poset with bottom. Then

Πr(P⊕Q) � Πr(P)×Πr(Q)×C2 ,

Πm(P⊕Q) � Πm(P)×Πm(Q)×C2 .

Proof. Let P,Q be posets, and let b be the bottom of Q and t the top of P. Let π be a regular
partition of P⊕Q. Let x ∈ P and y ∈ Q, and suppose that there exists a block B ∈ π such that
x,y ∈ B. By Corollary 3.4, we have x .π y and y .π x. We also have x .π t .π b.π y.π x .π t.
Thus, by Corollary 3.4, b, t ∈ B. We immediately see that the regular partitions of the poset
P⊕Q can be obtained in two possible ways only:

(a) by partitioning the posets P and Q independently,

(b) by partitioning the posets P and Q independently, and then making the union of the
block of P containing t and the block of Q containing b.

We can thus establish bijections among regular partitions of P⊕Q of type (a), regular parti-
tions of P⊕Q of type (b), and pairs (π′,π′′) where π′ is a regular partition of P and π′′ is a
regular partition of Q. These bijections yield a bijection ϕ=Πr(P⊕Q)→Πr(P)×Πr(Q)×C2,
as follows. Let C2 = {a,b}, with a < b, and let π be a regular partition of P⊕Q. Clearly, the
restriction of π to the elements of P is a regular partition π′ of P, and the restriction of π to
the elements of Q is the regular partition π′′ of Q. Then the bijection ϕ associates with π the
triplet ϕ(π) = (π′,π′′, x) ∈ Πr(P)×Πr(Q)×C2 such that
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• x = a if π is of type (a);

• x = b if π is of type (b).

We next prove that ϕ preserves the lattice operations. Let π,σ ∈ Πr(P ⊕ Q), and let
ϕ(π) = (π′,π′′, x) and ϕ(σ) = (σ′,σ′′,y). By Corollary 4.7, we obtain that π 6 σ in Πr(P⊕Q)
if and only if

• π′ 6 σ′ in Πr(P), and

• π′′ 6 σ′′ in Πr(Q), and

• x 6 y in C2,

that is, if and only if (π′,π′′, x) 6 (σ′,σ′′,y). Thus, ϕ is a lattice isomorphism between P⊕Q
and Πr(P)×Πr(Q)×C2.

The proof for monotone partitions is similar. �

Example 6.6. Some regular partition lattices of chains are shown in Figure 6.5. We know
from Section 6.2 that Πr(Cn) � Bn−1. Proposition 6.3 provides another proof of this iso-
morphism. In fact, since C2 = C1 ⊕C1, C3 = C2 ⊕C1, C4 = C3 ⊕C1, and so on, we have
Πr(C2) �C2, Πr(C3) �C2×C2, Πr(C4) �C2×C2×C2, . . . .

6.4 A case of counting

In this section we tackle a more complex instance of enumeration problem. We will provide
a formula for regular partitions of the family {Mi}i>1 of partially ordered sets depicted in
Figure 6.7.

Figure 6.7: A family of posets.

Clearly, Proposition 6.3 cannot help us, because even if Mi = A1 ⊕Ai ⊕A1, the antichain
Ai does not have bottom and top, except for the case i = 1.

We indicate by t the top of Mi, by r its bottom, and by m1, . . . ,mi all the other elements.
We can distinguish two kinds of partitions of the underlying set of Mi:

(a) partitions where t and r belong to different blocks, and
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(b) partitions where t and r belong to the same block.

It is an exercise to check that each partition of type (a) admits an extension to a regular
partition of Mi. Among the partition of type (b) there is the partition π̄ in a single block.
Clearly, such a partition admits an extension to a regular partition of Mi. Let now π , π̄ be a
partition of type (b), and let mk be an element of Mi which does not belong to the same block
of t in π. Since r and t belong to the same block, we infer r .π mk .π t .π r. By Corollary
3.4, π does not admit an extension to a regular partition of Mi.

We know that the number of partitions of the underlying set of Mi is Bi+2. Further,
we observe that the number of partitions of type (b) is Bi+1, because such partitions can be
thought of as partitions of Mi where r and t are identified into a single element. Since all the
partitions of type (a) admit an extension to a regular partition of Mi, and all the partitions of
type (b), except the single-block one, do not, we have:

|Πr(Mi)| = Bi+2−Bi+1+1 .

The following table shows the number of regular partitions of Mi for i 6 10.

i 1 2 3 4 5 6 7 8 9 10
|Πr(Mi)| 4 11 38 152 675 3264 17008 94829 562596 3535028

Example 6.7. We consider the poset M3 depicted in Figure 6.8. Figure 6.9 shows all the
regular partitions of M3.

Figure 6.8: The poset M3.

6.5 Counting order-preserving maps

Another problem related to our work is the enumeration of order-preserving maps. As we
will see in this section, the study of monotone and regular partitions of a poset can help
solving this kind of problems.

We take a step back to the classical problem of counting functions between sets. We
know that if A and B are sets, and |A| = n, |B| = x, the number of functions from A to B is
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Figure 6.9: Partitions of M3.

xn, and the number of injections from A to B is (x)n = x(x−1)(x−2) · · · (x−n+1). Given the
formula to count the number of injective functions, we can also obtain a formula for general
functions using the partition lattice of the domain A. In fact, observe that the lattice Πn is
ranked. The rank function on Πn is n−k, where k is the number of blocks of a partition. The
Whitney numbers of the second kind of Πn coincide with the Stirling numbers of the second
kind:

Wk = S (n,n− k) .
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Then, we note that each function factorizes uniquely as a surjection followed by an injection,
and deduce that we can count functions from A to B by counting all the possible injections
of all partitions of A into B. We obtain that the number of functions from A to B is

n∑
k=0

S (n,k)(x)k = xn .

Remark 6.3. We recall that the Stirling numbers of the second kind satisfy the basic recur-
rence:

S (n,k) = kS (n−1,k)+S (n−1,k−1) .

The following table shows the Stirling numbers of the second kind S (n,k) for n 6 9.

n S (n,1) S (n,2) S (n,3) S (n,4) S (n,5) S (n,6) S (n,7) S (n,8) S (n,9)
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1
9 1 255 3025 7770 6951 2646 462 36 1

We now go back to posets. In Poset – see Chapter 2 – we have two dual factorization
system. We choose to think of each order-preserving map as a regular epimorphism followed
by a monomorphism. Thus, we count order-preserving maps from a poset P to a poset Q by
counting all the possible order-preserving injections from all the regular partitions of P into
Q.

We consider the case studied in the previous section and we count the number of order-
preserving maps from a poset Mn to a poset Mx. To reach our goal, we need to investigate
a bit more deeply the structure of the regular partition lattice Πr(Mn). We know that the
total number of regular partitions is given by Bn+2 − Bn+1 + 1. One can verify at some la-
bor – recalling that Mn has n+ 2 elements – that the Whitney numbers of the second kind
W0, . . . ,Wn+1 of Πr(Mn) are given by:

Wk =

{
S (n+2,n+2− k)−S (n+1,n+2− k) if k , n+1 ,
S (n+2,n+2− k)−S (n+1,n+2− k)+1 = 1 otherwise .

For convenience, we denote the k-th Whitney number of the second kind of Πr(Mn), for
k = 0, . . . ,n+1 by R(n+2,n+2− k). We thus have:

R(h, j) =
{

S (h, j)−S (h−1, j) if j , 1 ,
1 if j = 1 .
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The value R(h, j) represents the (h− j)-th Whitney number of the second kind of the lattice
Πr(Mh−2). 1

h R(h,1) R(h,2) R(h,3) R(h,4) R(h,5) R(h,6) R(h,7) R(h,8) R(h,9)
3 1 2 1
4 1 4 5 1
5 1 8 19 9 1
6 1 16 65 55 14 1
7 1 32 211 285 125 20 1
8 1 64 665 1351 910 245 27 1
9 1 128 2059 6069 5901 2380 434 35 1

As we have seen before, in the classical case of sets and functions the knowledge of
these numbers, together with a formula to compute the number of injections, suffices to
derive a formula to compute the number of functions. Unfortunately, in the category Poset
this is not the case in general. In fact, unlike in the set-theoretic case, in a regular partition
lattice it is not always true that all the elements having the same rank – that is, all the regular
partitions having the same number of blocks – are isomorphic as posets. An example is given
in Figure 4.5. However, in the special case at hand all the regular partitions of the same rank
are isomorphic. In detail, it is possible to check that:

- the regular partition of Mn with rank n+1 is isomorphic to C1,
- the regular partitions of Mn with rank n are isomorphic to C2, and
- the regular partitions of Mn with rank k = 0, . . . ,n−1 are isomorphic to Mn−k.

For n = 3, see Figure 6.9. What we know now about the regular partition lattice of Mn is
sufficient to our aim.

We need now to find a formula to count order-preserving injections from Mn to Mx. Let
r be the bottom of Mn, r′ be the bottom of Mx, t be the top of Mn, t′ be the top of Mx, and
let m1, . . . ,mn be the remaining elements of Mn and m′1, . . . ,m

′
x be the remaining elements of

Mx. We can easily verify that an order-preserving injection from Mn to Mx must map r into
r′, t into t′, and each element mi into an element m′j, for 1 6 i 6 n and 1 6 j 6 x. In other
words, the number IMn,Mx of order-preserving injection from Mn to Mx equals the number of
injections from an n element set to an x element set, that is

IMn,Mx = (x)n . (6.1)

Since in the regular partition lattice of Mn we also have partitions isomorphic to C1 and C2,
we still need formulas to count the number IC2,Mx of order-preserving injections from C2 to
Mx, and the number IC1,Mx of order-preserving injections from C1 to Mx. We immediately
obtain:

IC1,Mx = x+2 , (6.2)

1Incidentally, we notice that the j-th column of the above table is generated by (
∏ j

k=2(1− kx))−1 - see the
bibliographic notes.
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IC2,Mx = 2x+1 . (6.3)

We are finally ready to derive a formula to count the total number Fn,x of order-preserving
maps from Mn to Mx. Indeed,

Fn,x =Wn+1IC1,Mx +WnIC2,Mx +Wn−1IM1,Mx + · · ·+W1IMn−1,Mx +WnIMn,Mx =

= R(n+2,1)IC1,Mx +R(n+2,2)IC2,Mx +R(n+2,3)IM1,Mx + · · ·+R(n+2,n+2)IMn,Mx =

= R(n+2,1)IC1,Mx +R(n+2,2)IC2,Mx +

n∑
k=1

R(n+2,k+2)IMk ,Mx

Summing up, noting that R(n+2,2) = 2n, from (6.1 - 6.3) we have

Fn,x = x+2+2n(2x+1)+
n∑

k=1

R(n+2,k+2)(x)k. (6.4)

Example 6.8. We want to enumerate order preserving maps from M3 to M4. Formula (6.4)
gives the answer

F3,4 = 4+2+23(2 ·4+1)+
3∑

k=1

[S (3+2,k+2)−S (3+1,k+2)](4)k = 286 .

We give a combinatorial interpretation of this formula by counting in how many ways
we can inject all the regular partitions of M3 into M4. Figure 6.9 tells us that in the regular
partition lattice of M3 there are

- 1 copy of C1,
- 8 copies of C2,
- 19 copies of M1,
- 9 copies of M2, and
- 1 copy of M3.

We observe now that there are
- 6 order-preserving injections of C1 into M4,
- 9 order-preserving injections of C2 into M4,
- (4)1 = 4 order-preserving injections of M1 into M4,
- (4)2 = 12 order-preserving injections of M2 into M4,
- (4)3 = 24 order-preserving injections of M3 into M4.

Thus, the number of order-preserving maps from M3 to M4 is

F3,4 = 1 ·6+8 ·9+19 ·4+9 ·12+1 ·24 = 286 .

6.6 Remarks on Möbius inversion

Let {pn(x)}n>0 and {qn(x)}n>0 be two polynomial sequences such that, for all n, the degree of
pn(x) and qn(x) is n. By elementary linear algebra, there exist two sequences of connection
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constants {cn,k} and {dn,k} such that, for all n,

pn(x) =
∑

k

cn,kqk(x) and qn(x) =
∑

k

dn,k pk(x) .

If we are able to provide a direct counting argument for one of these connection formulas, we
can try to find the other formula, the inverse formula, by the well-known method of Möbius
inversion, applied on a suitable poset. In many cases, according to G.-C. Rota et al. [JRS81],
“the most difficult part of this program is to guess the right poset”. Formally, the Möbius
inversion theorem states what follows.

Theorem 6.4. Let P be a given poset with bottom element 0, and let f and g be maps from
P to a field F such that for all σ ∈ P

g(σ) =
∑
σ6π

f (π) . (6.5)

Then there exists a unique function µ : P→ F, called Möbius function, such that

f (0) =
∑
π∈P

µ(π)g(π) . (6.6)

Computation of the Möbius function for the finite lattices we are going to deal with is
quite simple. In fact, we can easily do it recursively. Let L be a lattice, and let 0 be the
bottom of L. We have µ(0) = 1, and µ(π) = −∑σ<π µ(σ), for each π ∈ L, π , 0.

Consider the sequence {xn}, which counts the number of functions from a set with n
elements to a set with x elements. As already mentioned,

xn =

n∑
k=0

S (n,k)(x)k . (6.7)

The Stirling numbers of the second kind S (n,k) are the Whitney numbers of the second kind
of the lattice Πn. Clearly, we can also write

xn =
∑
π∈Πn

(x)ν(π) , (6.8)

where ν(π) is the number of blocks of the partition π. We want to derive the inverse formula
of (6.7) by using Möbius inversion on Πn. We set

f (π) = (x)ν(π) and g(π) = xν(π) ,

so that we can rewrite the formula (6.8) as

g(0) =
∑
06π

f (π) , (6.9)
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where 0 is the bottom of Πn, that is the partition into singletons. Since for all σ ∈ Πn the
poset Pσ = {π ∈ Πn | σ 6 π} is isomorphic to Πν(σ), we can generalize the formula (6.9) to
obtain

g(σ) =
∑
σ6π

f (π) .

Finally, by the Möbius inversion theorem we have

(x)n = f (0) =
∑
π∈Πn

µ(π)g(π) =
∑
π∈Πn

µ(π)xν(π) =

n∑
k=0

xk
∑
π∈Πn
ν(π)=k

µ(π) . (6.10)

For ranked posets, we can define the Whitney numbers of the first kind by

wk(P) =
∑
π∈P

r(π)=k

µ(π) ,

where r(π) is the rank of π. For Πn the Whitney numbers of the first kind are the Stirling
numbers of the first kind s(n,k). Formula (6.10) thus becomes

(x)n =

n∑
k=0

s(n,k)xk ,

the inverse of (6.7).

This procedure extends to posets. In this case the right posets to use for Möbius inversion
are the monotone and regular partition lattices. Specifically,

• if we are able to provide a formula for order-preserving maps from a poset P to a poset
Q in terms of the numbers of order-preserving injections, we can do the inversion on
the lattice Πr(P) and derive a formula to count order-preserving injections from P to
Q in terms of the numbers of order-preserving maps;

• if we are able to provide a formula for order-preserving maps from a poset P to a poset
Q in terms of the numbers of order-embeddings (regular monomorphism), we can do
the inversion on the lattice Πm(P) and derive a formula to count order-embeddings
from P to Q in terms of the numbers of order-preserving maps.

We give here just a numerical example of how this inversion works. What is interesting
in this example is that not all the partitions having the same rank are isomorphic. This fact
will force us to analyze the structure of Πr “element by element”. To give the following
results, we make use of a special Mathematica R© package for treating posets and partitions,
developed by the author.

We consider the posets P and Q depicted in Figure 6.10. Figure 6.11 shows all the regular
partitions of P. Figure 6.12 shows the regular partition lattice of P.

We observe that the lattice Πr contains
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Figure 6.10: The posets P and Q.

Figure 6.11: Regular partitions of P.

• 1 copy of π1,

• 2 isomorphic copies of π2,

• 2 isomorphic copies of π3,

• 2 isomorphic copies of π4,

• 6 isomorphic copies of π8, and

• 1 copy of π14.
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Figure 6.12: Regular partition lattice of P.

We first count order-preserving maps from P to Q directly, summing the numbers of
order-preserving injections from πi to Q, for i = 1, . . . ,14. From now on, we indicate by Fi

and Ii the number of order-preserving maps and order-preserving injections from πi to Q,
respectively. We have

I1 = 0 , I2 = 1 , I3 = 2 , I4 = 2 , I8 = 3 , and I14 = 3 .

Summing up, we obtain the total number FP of order-preserving maps from P to Q:

FP = 1 ·0+2 ·1+2 ·2+2 ·2+6 ·3+1 ·3 = 31 .

We are now ready to do. . . the inverse of what we have done. Following the guidelines
of the Möbius inversion method, we compute the number IP of order-preserving injections
from P to Q, using the numbers of order-preserving maps from all the regular partitions of P
to Q. (Note that we already know our result, because obviously IP = I1 = 0.) We immediately
obtain

F1 = 31 , F2 = 10 , F3 = 14 , F4 = 14 , F8 = 6 , and F14 = 3 .

From Figure 6.12 we see that the values of the Möbius function for the elements of Πr(P)
are

• µ(π1) = 1,

• µ(π2) = µ(π3) = µ(π4) = µ(π5) = µ(π6) = µ(π7) = −1,

• µ(π8) = µ(π9) = µ(π11) = µ(π13) = 2,

• µ(π10) = µ(π12) = 1, and

• µ(π14) = −5.
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Finally, we can compute IP, obtaining

IP = µ(π1)I1+ [µ(π2)+µ(π7)]I2+ [µ(π3)+µ(π6)]I3+ [µ(π4)+µ(π5)]I4+

+[µ(π8)+µ(π9)+µ(π10)+µ(π11)+µ(π12)+µ(π13)]I8+µ(π14)I14 =

= 1 ·31−2 ·10−2 ·14−2 ·14+10 ·6−5 ·3 = 0 ,

as desired.

6.7 Bibliographic notes

As general references to enumeration problems, we cite the classical books [Sta97], [Aig79],
and [Com74]. For more specific problems we mention here [BM02] and [ES91], where
the problem of counting finite posets is treated, and [Rot64a], where a discussion on set-
partitions can be found. The latter works can be seen as specific cases of our more general
problem of counting monotone and regular partitions of posets. More closely related to
our work are, for instance, [BM05], [Pfe04], and [Ric98], that study the enumeration of
quasiorders. For what concerns the number of order-preserving maps, we cite [Far95] and
[DRSW92], where some particular counting problems are tackled.

A very useful general reference for enumeration problems is the website

http://www.research.att.com/˜njas/sequences/

This page collects a huge number of numerical sequences, with formulas to compute these
numbers, when available, links, and references. Sequences related to this chapter are, for
instance, A001035, which counts the number of posets with n labeled elements, A000798,
which counts the number of different quasiorders with n labeled elements, and the sequence
A000110 of Bell numbers. One can also find the sequences A001047 for R(h,3), A016269
for R(h,4), and A025211 for R(h,5).

The last part of the chapter is devoted to the Möbius inversion. References on this
topic can be found in [BS97], [BP95], [BBR82] and [Rot64b], but we refer in particular
to [JRS81]. In this paper the authors apply the Möbius inversion to three specific cases. The
first case, involving the polynomial sequences xn and (x)n, is reported here in Section 6.6.
In the introduction, the authors emphasize the role of the choice of the poset on which the
inversion takes place.
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Möbius inversion, 79
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