A COMBINATORIAL EXPANSION ARISING FROM LUKASIEWICZ LOGIC

PIETRO CODARA

This is a joint work with O. M. D'Antona and V. Marra. In this work, we consider possible generalisations of the basic expansion $x^n = \sum_{k=0}^n {n \\ k}(x)_k$ to multisets arising as Birkhoff duals of finite MV algebras.

Following [1], we consider the category C_{fin} whose objects are finite *multisets*, i.e. functions $\alpha \colon A \to \mathbb{N}$, with A a finite set. A morphism $f \colon \alpha \to \gamma$ between multisets $\alpha \colon A \to \mathbb{N}$ and $\gamma \colon C \to \mathbb{N}$ is a function $f \colon A \to C$ such that for all $a \in A$, $\gamma \circ f(a) \mid \alpha(a)$, where $s \mid t$ stands for "s divides t".

One sees [1, Theorem 6.8] that $C_{\rm fin}$ is dually equivalent to the category of finite MV-algebras [2]. MV-algebras are to Boolean algebras as Łukasiewicz logic is to Boolean logic. Thus, our multisets generalize sets in the same sense as Łukasiewicz logic generalize classical logic.

To generalize $x^n = \sum_{k=0}^n {n \\ k}(x)_k$, we proceed as follows. We associate with a multiset α a partition ν of an integer determined by its multiplicities. We say that α is a ν -set. Then, we introduce the notions of weak and strong partitions of a multiset, and write $\{{\nu \atop k}\}$ and $\{{\nu \atop k}\}$ for the number of weak κ -partitions (i.e., partitions which are κ -sets) and strong κ -partitions of a ν -set, respectively. We also introduce the notions of weak subset and strong subset in an appropriate manner, and write $((\chi))_{\nu}$ and $(\chi)_{\nu}$ for the number of weak ν -subsets and strong ν -subsets of a χ -set, respectively. Let χ^{ν} denote the number of functions from a ν -set to a χ -set. The promised generalisations of $x^n = \sum_{k=0}^n {n \atop k}(x)_k$ are obtained as follows. **Theorem.** For any two partitions of integers ν and χ , we have

$$\sum_{\kappa} \left\{ \left\{ \begin{array}{c} \nu \\ \kappa \end{array} \right\} \right\} (\chi)_{\kappa} = \chi^{\nu} = \sum_{\kappa} \left\{ \begin{array}{c} \nu \\ \kappa \end{array} \right\} ((\chi))_{\kappa} ,$$

where κ ranges over all partitions of a integer.

[1] R. L. O. Cignoli, E. Dubuc, and D. Mundici, *Extending Stone duality to multisets and locally finite MV-algebras*, J. Pure Appl. Algebra 189, no. 1-3, 37–59, 2004.

[2] R. L. O. Cignoli, I. M. L. D'Ottaviano, and D. Mundici, Algebraic foundations of many-valued reasoning, Kluwer Academic Publishers, Dordrecht, 2000.

DIPARTIMENTO DI MATEMATICA F. ENRIQUES, UNIVERSITÀ DEGLI STUDI DI MILANO, ITALY *E-mail address*: codara@mat.unimi.it

Date: April 16, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 06D35, 06E15, 05A10.